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Abstract 

This review provides the basic principle and rational for ROC analysis of rating and 

continuous diagnostic test results versus a gold standard. Derived indexes of accuracy, in 

particular area under the curve (AUC) has a meaningful interpretation for disease 

classification from healthy subjects. The methods of estimate of AUC and its testing in 

single diagnostic test and also comparative studies, the advantage of ROC curve to 

determine the optimal cut off values and the issues of bias and confounding have been 

discussed. 

Keywords: Sensitivity, Specificity, ROC curve, Area under the curve (AUC), Parametric, 

Nonparametric, Bias.  
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E valuation of diagnostic tests is a matter of concern in modern medicine not only for 

confirming the presence of disease but also to rule out the disease in healthy subjects. In 

diagnostic test with dichotomous outcome (positive/negative test results), the conventional 

approach of diagnostic test evaluation uses sensitivity and specificity as measures of accuracy 

of test in comparison with gold standard status (1). In situation where the test results are 

recorded in ordinal scale (e.g. 5 ordinal scale: "definitely normal", "probably normal", 

"uncertain", "probably abnormal", "definitely abnormal") even or the test results are reported 

on continuous scale, the sensitivity and specificity can be computed across all the possible 

threshold values (2-4). So, the sensitivity and specificity vary across the different threshold 

and the sensitivity is inversely related with specificity (1-4). Then, the plot of sensitivity 

versus 1-Specifity is called receiver operating characteristic (ROC) curve and the area under 

the curve (AUC), as an effective measure of accuracy has been considered with a meaningful 

interpretations (5). This curve plays a central role in evaluating diagnostic ability of tests to 

discriminate the true state of subjects, finding the optimal cut off values, and comparing two 

alternative diagnostic tasks when each task is performed on the same subject (5-7). Pubmed 

search reveals that this analysis has been used extensively in clinical epidemiology for the 

assessment of diagnostic ability of biomarkers (e.g. serum markers) and imaging tests in 

classification of the diseased from the healthy subjects (7-11). This predictive model is also 

commonly used to estimate the risk of any adverse outcome based on the patient’s risk profile 

in medical researches. This article provides a full review of  the advantage of ROC curve, 

measures of accuracy that use the ROC curve and their statistical behaviours, the issues of bias 

and confounding in ROC analysis.  

Conventional Analysis of Diagnostic Test Data 

Conventionally, a standard way of describing the accuracy of a diagnostic test is the 

two-by-two table. This is performed when the test results are recorded as dichotomous 

outcomes (positive/negative results). As table 1 shows, the column represents the true status of 

disease state that is assessed without errors by gold standard.  
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This standard may be another test but more expensive 

diagnostic method or invasive method but more accurate or 

combination of tests may be available in clinical follow up, 

surgical verification, autopsy, biopsy or by a panel of experts 

(6, 11). The row of table 1 represents the dichotomous outcome 

of test results. From the frequency of test results among 

patients with and without disease based on gold standard, one 

can derive the probability of a positive test result for patients 

with disease (i.e. the conditional probability of correctly 

indentifying the diseased subjects by test-- sensitivity or true 

positive fraction-TPF) and the probability of negative test 

results for patients without disease (i.e. the conditional 

probability of correctly identifying non-diseased subjects by 

test -- specificity or true negative fraction-TNF). The positive 

predicted values (PPV) and the negative predicted values 

(NPV) are the two other indices that are useful in clinical 

practice when test results are available for the clinicians. The 

PPV is defined as the probability of disease for positive test 

results and the NPV is also defined the probability of being 

healthy for negative test results. Although, these two measures 

are useful for clinical decision, these are influenced by the prior 

prevalence of disease in population. PPV is elevated with a 

higher prevalence of disease while the NPV decreases with a 

higher prevalence (12). 

The PPV and NPV can also be calculated from Bayes’ 

theorem using the estimates of sensitivity and specificity and 

the prior probability of disease (or prevalence of diseased in 

population) before the test is applied. The PPV and NPV are 

calculated through the posterior probability of the diseased 

after the test results are known. Let p denotes the prevalence of 

the diseased in population and Sen and Spe in the sensitivity 

and specificity of diagnostic test, then the PPV and NPV are 

formulated using Bayes’ theorem as follows: 

PPV=p× Sen / [p ×Sen+ (1-p) ×Spe] and NPV= (1-p) ×Spe 

/ [p×(1-Sen)+(1-p) ×Spe] 

Thus, one calculates the PPV and NPV if one knows the 

sensitivity, specificity and pre-test probability of the diseased in 

population (i.e. prevalence). These two indices are influenced 

by the prevalence of disease. When disease prevalence is high 

the PPV increases and the NPV decreases. 

The conventional diagnostic test indexes (sensitivity and 

specificity) can be combined into a single index as likelihood 

ratio (13). The likelihood ratio is defined as the ratio of two 

density functions of test results conditional in diseased and 

non-diseased subjects. The positive LR of test (LR
+
) is nothing 

more than the ratio of sensitivity to 1-sepecificity. 

LR+ =
pr[T + │D+]

pr[T +  │D−]
=

sensitivity

1 − specificity
 

 

 The LR
+
 is ranged from 0 to infinity. The worst case is 

LR
+
=0. This happens when sensitivity becomes close to 0. The 

largest value of LR
+
 occurs when specificity tends to be close 

to 1 and sensitivity also to be close to 1. Thus the higher value 

of LR
+
 has a greater information value for diagnostic test. On 

the other hand, the negative likelihood ratio (LR
-
) is the ratio of 

probability of negative test in diseased to non diseased. This is 

also the ratio of 1-sensitivity to specificity. 

 

LR− =
pr[T − │ D+]

pr[T −  │D−]
=

1− sensetivity

specificity
 

 

  The lower (i.e close to 0) LR
-
 has a greater information 

values of a negative test. The larger value of LR
-
 has lower 

information values. Therefore, the total information content of 

a diagnostic test can be summarized either its LR
+ 

or its LR
-
. 

The Bayesian analysis combines the data of the likelihood ratio 

of test and prior odds of disease in order to obtain the posterior 

odds of disease among positive and negative test results (13). 

Posterior odds of disease=likelihood ratio × prior odds of 

disease 

 

Table 1.  Frequencies of test outcome for n1 patients with 

disease and n2 patients without disease  

 

Diagnostic test result Disease status 

Present Absent 

Positive 

Negative 

a (TP) 

c (FN) 

b (FP) 

d (TN) 

Total n1=a+c n2=b+d 

Summary Indices of Test Performance   

TPF=True Positive Fraction (Sensitivity)= TP/ (TP+FN)= a/(a+c) 

FNF=False Negative Fraction (1-Sensitivity)= FN/ (TP+FN)= c/(a+c) 

TNF=True Negative Fraction (Specificity)= TN/ (TN+FP)= d/(b+d) 

FPF=False Positive Fraction (1-specificity)= FP/ (TN+FP)= b/(b+d) 

PPV=Positive Predicted Value=TP/(TP+FP)=a/(a+b) 

NPV=Negative Predicted Value=TN/(TN+FN)=d/(c+d) 

 

Conventional analyses consider the sensitivity and the 

specificity of a diagnostic test as the primary indices of 

accuracy since these indices are considered to be independent 

of the prior probability of disease. However, using a single 

sensitivity and a single specificity as measures of accuracy is 

problematic since these measures depend on a diagnostic 

criterion (i.e. cut-off) for positivity which is often chosen 
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arbitrarily (14, 15). For example, one observer may choose a 

lenient decision criterion and the other may choose a stringent 

decision criterion for positivity. ROC analysis circumvents this 

arbitrariness. 

Background and Rationale of ROC Analysis 

ROC analysis originated in the early 1950's with electronic 

signal detection theory (16). One of the first applications was in 

radar, to separate observer variability from the innate 

delectability of signal. Psychologists also adapted ROC 

methodology into psychology in the early 1950's in order to 

determine the relationship between properties of physical 

stimuli and the attributes of psychological experience (sensory 

or perceptual) (17). The task of observers is to detect a weak 

signal in the presence of noise; e.g. whether the "signal" was 

caused by some sensory event.  

The applications of ROC methodology in diagnostic 

radiology and radionuclide imaging date back to the early 

1960's. The first ROC curve in diagnostic radiology was 

calculated by Lusted (1960) who re-analyzed the previously 

published data on the detection of pulmonary tuberculosis and 

showed the reciprocal relationship between the percentage of 

false positive and of false negative results from the different 

studies of chest film interpretations (18). Since then, several 

authors have used ROC methodology to diagnostic imaging 

systems. The work of Dorfman and Alf (1968) was a 

pioneering step toward objective curve fitting and the use of 

computerized software in ROC analysis (19). An automated 

program of maximum likelihood approach under binormal 

assumption was developed in 1968. Since then, several new 

methodologic developments have been implemented in 

programs such as ROCFIT, CORROC, ROCPWR, and 

LABROC, developed by Metz at the University of Chicago for 

analysis of ROC data. They are available in the public domain 

(20). 

During the past four decades, ROC analysis has become a 

popular method for evaluating the accuracy of medical 

diagnostic systems. The most desirable property of ROC 

analysis is that the accuracy indices derived from this technique 

are not distorted by fluctuations caused by the use of arbitrarily 

chosen decision criteria or cut-offs. In other words, the indices 

of accuracy are not influenced by the decision criterion (i.e. the 

tendency of a reader or observer to choose a specific threshold 

on the separator variable) and/or to consider the prior 

probability of the "signal" (16).  The derived summary measure 

of accuracy, such as the area under the curve (AUC) 

determines the inherent ability of the test to discriminate 

between the diseased and healthy populations (21). Using this 

as a measure of a diagnostic performance, one can compare 

individual tests or judge whether the various combination of 

tests (e.g. combination of imaging techniques or combination 

of readers) can improve diagnostic accuracy.  

Basic Principles of ROC Analysis 

ROC analysis is used in clinical epidemiology to quantify 

how accurately medical diagnostic tests (or systems) can 

discriminate between two patient states, typically referred to as 

"diseased" and "nondiseased" (16, 17, 21, 22). An ROC curve 

is based on the notion of a "separator" scale, on which results 

for the diseased and nondiseased form a pair of overlapping 

distributions (1). The complete separation of the two 

underlying distributions implies a perfectly discriminating test 

while complete overlap implies no discrimination. The ROC 

curve shows the trade off between the true positive fraction 

(TPF) and false positive fraction (FPF) as one change the 

criterion for positivity (1, 22).  

Figure 1 show the two overlapping distributions with four 

thresholds used and figure 2 is the corresponding ROC curve 

and the arrows on the curve show ROC operating points. 

Derived indices, such as the area under the entire curve (AUC), 

the TPF at a specific FPF, or the partial area corresponding to a 

clinically relevant range of FPF (5, 23-25), are the most 

commonly used to measure diagnostic accuracy. Here, we 

briefly discuss the concept of ROC curve and the meaning of 

area under the curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The two overlapping distributions (binormal 

model: probability density function-PDF) for diseased 

(right site) and nondiseased (left side) and four different 

decision threshold 
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Figure 2. ROC curve derived from two overlapping 

distributions in Figure 1. 

 

Concept and Interpretation of ROC Curve 

The concept of an ROC curve is based on the notion of a 

"separator" (or decision) variable. The frequencies of positive 

and negative results of the diagnostic test will vary if one 

changes the "criterion" or "cut-off" for positivity on the 

decision axis. Where the results of a diagnostic system are 

assessed based on subjective judgement, the decision scale is 

only "implicit". Such a decision variable is often called a 

"latent" or unobservable variable. 

The plot of TPF (sensitivity) versus FPF (1-specificity) 

across varying cut-offs generates a curve in the unit square 

called an ROC curve. ROC curve corresponding to 

progressively greater discriminant capacity of diagnostic tests 

are located progressively closer to the upper left-hand corner in 

"ROC space" (figure 3 shows test B has a greater discriminate 

capacity than test A). An ROC curve lying on the diagonal line 

reflects the performance of a diagnostic test that is no better 

than chance level, i.e. a test which yields the positive or 

negative results unrelated to the true disease status. The slope 

of an ROC curve at any point is equal to the ratio of the two 

density functions describing, respectively, the distribution of 

the separator variable in the diseased and nondiseased 

populations, i.e. the likelihood ratio (26, 27). A monotonically 

increasing likelihood ratio corresponds to a concave ROC 

curve (16, 17). The area under the curve (AUC) summarizes 

the entire location of the ROC curve rather than depending on a 

specific operating point (1, 5). The AUC is an effective and 

combined measure of sensitivity and specificity that describes 

the inherent validity of diagnostic tests (7).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. ROC curves of two diagnostic tasks (test A versus  

test B) 

 

As an example of real data of breast cancer study that was 

reported recently by Hajian-Tilaki et al. (12), the calculation of 

sensitivity and specificity of various cut-off values of body 

mass index (BMI) for predicting of breast cancer are given in 

table 2 and shows that sensitivity and specificity has an inverse 

relationship (12). As an illustration, the corresponding 

empirical ROC curve was drawn in figure 4 by a 

nonparametric method using SPSS software (AUC=0.79, 95% 

confidence interval: 0.74-0.84, p<0.001). This curve and the 

corresponding AUC show that BMI as a biomarker has 

predictive ability to discriminate breast cancer from normal 

subjects. 

Indices of Accuracy 

Several indices of accuracy have been proposed to 

summarize ROC curves (1, 5, 13). Based on these indices, 

statistical tests have been developed to compare the accuracy of 

two or more different diagnostic systems. We will review 

briefly the three important commonly used indices, AUC, 

partial area, TPFFPF, and their statistical properties. These 

indices can be estimated both parametrically and 

nonparametrically. The area under the curve (AUC), as a one-

dimensional (uni-dimensional) index, summarizes the "overall" 

location of the entire ROC curve. It is of great interest, since it 

has a meaningful interpretation. The AUC can be interpreted as 

the probability that a randomly chosen diseased subject is rated 

or ranked as more likely to be diseased than a randomly chosen 

nondiseased subject (5). This interpretation is based on 

nonparametric Mann-Whitney U statistics that is used in 
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calculating AUC (5). The other interpretation is the average 

value of sensitivity for all the possible values of specificity. 

Such an index is especially useful in a comparative study of 

two diagnostic tests (or systems). If two tests are to be 

compared, it is desirable to compare the entire ROC curve 

rather than at a particular point (1). The maximum AUC=1 

means that the diagnostic test is perfect in the differentiation 

between the diseased and nondiseased. This happens when the 

distribution of test results for the diseased and nondiseased do 

not overlap. AUC =0.5 means the chance discrimination that 

curve located on diagonal line in ROC space. The minimum 

AUC should be considered a chance level i.e. AUC=0.5 while 

AUC=0 means test incorrectly classify all subjects with 

diseased as negative and all subjects with nondiseased as 

positive that is extremely unlikely to happen in clinical 

practice. 

 

Table 2. An example of real data showing sensitivity and specificity at various cut- off points of  

BMI for detection of breast cancer 

Cut-off values 

of BMI (kg/m
2
) 

Breast cancer 

(n=100) 

Normal subjects 

(n=200) 

 

Sensitivity 

 

Specificity 

True  

positive 

(TP) 

False 

negative 

(FN) 

False 

positive 

(FP) 

True 

negative 

(TN) 

18 

20 

22 

24 

26 

28 

30 

32 

34 

36 

38 

40 

100 

100 

99 

95 

85 

66 

47 

34 

21 

17 

7 

1 

0 

0 

1 

5 

15 

34 

53 

66 

79 

83 

93 

99 

200 

198 

177 

117 

80 

53 

27 

17 

14 

6 

4 

1 

0 

2 

23 

83 

120 

147 

173 

183 

186 

194 

194 

199 

1.0 

1.0 

0.99 

0.95 

0.85 

0.66 

0.47 

0.34 

0.21 

0.17 

0.07 

0.01 

0.0 

0.01 

0.115 

0.415 

0.60 

0.735 

0.865 

0.915 

0.93 

0.97 

0.98 

0.995 

 

Partial Area Index: Despite the meaningful interpretation 

and statistical properties of AUC, it may still be argued that a 

large part of the area arises from the right side of the unit 

square where the high false positive fraction is of no clinical 

relevance. Thus, one may be adding noise when using the area 

index to compare the two different diagnostic systems. Also, 

two ROC curves with the same area may cross, but one may 

have higher TPF than another in the clinically relevant range of 

FPF. In this situation, a partial area under the curve 

corresponding to a clinical relevant FPF is recommended as an 

index of choice (25, 28- 30).    

TP fraction for a given FP fraction: A true positive fraction 

(TPF) for a given false positive fraction (FPF), termed TPFFPF 

for short, is one natural index of accuracy (23). One may be 

interested in comparing the performance of two tests at a given 

FPF for clinical reasons, especially in a case where two ROC 

curves cross. The areas under the curves may be equal but in a  

 

clinical range of interest the FPF for one test may be superior to 

that of the other. Also, TPFFPF can easily be applied and it is 

readily understood. However, the main criticism of TPFFPF as 

an index of accuracy is that the different investigators may not 

report the estimates of TPF at the same FPF. If so, the two TPF 

from the different investigators of the same test may not be 

comparable.  

Advantage of ROC Curve Analysis and Optimal Cut-off 

Value 

ROC curve analysis has several advantages (31-36). First, 

in contrast to single measures of sensitivity and specificity, the 

diagnostic accuracy, such as AUC driven from this analysis is 

not affected by decision criterion and it is also independent of 

prevalence of disease since it is based on sensitivity and 

specificity. Second, several diagnostic tasks on the same 

subjects can be compared simultaneously in a ROC space and 

the methods also developed to consider the covariance between 
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two correlated ROC curve (6, 37). Third, one can easily obtain 

the sensitivity at specific FPF by visualizing the curve. Forth, 

the optimal cut- off value can be determined using ROC curve 

analysis (26). In determining optimal cut off values, at least 

three methods have been proposed (7, 26, 32, 33, 35). The two 

methods give equal weight to sensitivity and specificity with no 

ethical, cost and prevalence constraints (7). The first method 

uses the square of distance between the point (0, 1) on the 

upper left hand corner of ROC space and any point on ROC 

curve ie. d
2
= (1-TPF)

2
+ FPF

2
=(1-sensetivity)

2
+ (1-specificty)

2
. 

In order to obtain the optimal cut off points, the square of this 

distance is minimized. In other words, one can calculate this 

distance for each cut off point in order to find the optimal cut- 

off value. The second method called Youden index uses the 

maximum of vertical distance of ROC curve from the point (x, 

y) on diagonal line (chance line). In fact, Youden index 

maximizes the difference between TPF (sensitivity) and FPF 

(1-sepicificity): Youden Index=TPF-FPF= Sensitivity+ 

Specificity -1. Thus, by maximizing Sen + Spec aross various 

cut-off points, the optimal cut- off point is calculated. The third 

method incorporates the financial costs for correct and false 

diagnosis and the costs of further work up for diagnosis. In 

fact, the consequence of each possible test outcome is 

ascertained to their costs and combining ROC analysis with 

utility-based decision theory can be used to determine the 

optimal cut point (26). For example, given a disease with low 

prevalence and high cost of false positive diagnosis, the cut-

point may be chosen at higher value to maximize specificity 

while for a disease occurring at high prevalence and missing 

diagnosis has a serious fatal consequences, a lower cut-point 

value would be selected to maximize sensitivity.   

Testing of accuracy index (AUC) of a single diagnostic 

test 

Suppose clinical researcher may wish to test the accuracy 

(AUC) of a single diagnostic test as unknown parameter with 

a pre-specified value of AUC0. Thus, the null and alternative 

hypotheses are: H0: AUC=AUC0 versus H1: AUC ≠ AUC0. 

With normal approximation of asymptotic properties of 

AUC, the Z-score under H0 is as follows: 

 

Z=
AUC −  AUC 0

SE (AUC ) 
 

 

where AUC   and its standard error can be estimated either 

parametric (binormal model) or purely nonparametric 

approaches. Hanley and McNeil showed that AUC has a 

meaningful interpretation as Man- Whitney U-statistics and 

thus, U-statistics is a nonparametric estimate of AUC. In 

addition, they proposed exponential approximation of SE of 

nonparametric AUC (5). Delong et al. also developed a 

nonparametric methods of SE of AUC (37). The DeLong’s 

method of components of U-statistics and its SE has been 

well illustrated by Hanley and Hajian-Tilaki in a single 

modality of diagnostic test (38). 

 In testing, if the absolute observed value of Z-score is 

greater than its critical value at 95% confidence level (i.e. 

|Zobs|> 1.96), then the null hypothesis would be rejected and 

its p-value can be calculated by Z- distribution using 

observed Z- score. Obviously, one can test AUC with any 

prespecified value for example testing AUC with chance 

level (AUC=0.5). SPSS software allows to depict ROC curve 

in unit square space by trapezoidal rule (i.e. nonparametric 

method) and nonparametric estimate of AUC and its SE and 

95% confidence interval and the p-value for testing 

AUC=0.5 versus AUC ≠0.5 are calculated as well. 

Testing the Accuracy in comparative study of two 

diagnostic tests 

In comparative diagnostic studies in the context of ROC 

analysis, as an example, an investigator has a plan to 

compare the accuracy of MRI and CT in detecting 

abnormality. The accuracy of these two diagnostic tests are 

usually calculated on the same subjects (i.e. each subject 

undergoing two alternative diagnostic tasks) for the purpose 

of the efficiency of design. Let us suppose AUC1 and AUC2 

are the accuracy of MRI and CT respectively. The null and 

aletrnative hypothesis H0: AUC1 =AUC2 versus H1: AUC1≠ 

AUC2. 

Using the normal approximation under the null 

hypothesis, the Z-score is as follows 

 

Z=
AUC 1−AUC 2

SE (AUC 1−AUC 2  )
 

Where  

 

SE AUC 1 − AUC 2   

=   Var AUC1 + Var(AUC2 )− 2Cov (AUC1 , AUC2 ) 

 

Cov  AUC1 , AUC2  = r  SE(AUC1)  SE(AUC2)  

 

where r and SE denote the correlation between two 

AUC’s and standard error of each AUC. If the two 

diagnostic tests are not examined on the same subjects, 

obviously the two estimated AUC’s are independent and the 

covariance term would be zero. The SE (AUC1)  and 
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SE (AUC2)  can be estimated using Hanley and McNeil 

formula (5) but it does not give the covariance between the 

two AUCs . However, the advantage of Delong method is that 

the covariance between two correlated AUC can be 

estimated from its components of variance covariance matrix 

as well (37). In addition, the CORROC software as 

developed by Metz et al. also provide the correlation and 

thus, the covariance between the two correlated AUC’s is in 

the parametric approach (20, 39). 

Spectrum and Bias 

The defects in designing of diagnostic studies concern 

spectrum and bias. Spectrum means to what extend the range 

of patients or controls be adequate. A broad spectrum of case 

and control are required to evaluate the accuracy of 

specificity and a broad spectrum for accuracy of specificity. 

For example, the case should be recruited with pathologic 

spectrum both for the local and metastatic and extend the 

histology. Thus, the clinical spectrum of disease should 

include varying degrees of severity. The second type of 

design defect is bias. The bias leads in a falsely low or high 

sensitivity/specificity and thus results in a falsely low or high 

AUC. The bias in diagnostic assessment has been 

manifesting in different ways. For example, work up bias 

means the results of work up has been affected by extensive 

subsequent “work up” i.e. further diagnosis procedure leads 

to the increase of the chance of diagnosis. Non-blind design 

(i.e. the person makes a decision and interpretation of test 

results) is aware of the status of case and control when the 

test result is in a matter of subjectivity. Incorporating bias 

means the test results are actually incorporated as a part of 

evidence used to make diagnosis (13, 40). 

Confounding Issues  

In designing a diagnostic study, a covariate incorporates 

a role of confounder if it has been associated with both 

disease status and test results (41). For example, if the 

distribution of age is incomparable between case and control 

and age is associated with test results, then age could be a 

confounder. The confounder leads the location of ROC curve 

deviates from its true location in ROC space. Thus, it results 

over or under estimate in ROC diagnostic accuracy. 

Restriction and matching in design and using adjustment 

methods in statistical analysis help that confounding be 

prevented. For example, if age is a confounder, then 

stratified ROC curve with age (<60 years and ≥60 years) and 

combining the stratum specific AUC with some weighing 

approach yields a valid estimate of AUC. An attempt has 

been focused for covariate adjustment by regression model 

in ROC analysis, but the approach was not used widely in 

medical literature perhaps because of lack of availability of 

software by clinicians in the literature of diagnostic test 

evaluation (42). ROC analysis is also involved with several 

other methodological aspects, such as model selection to 

derive ROC curve, the choice between parametric and 

nonparametric approaches, multiple reader variations in 

subjective interpretations, presence of errors in gold standard 

assessment or even the absence of gold standard and the 

methods for adjusting confounding. The interesting readers 

are referred to some published articles in this context (43-50). 

In summary, despite the fantastic feature of ROC 

analysis in diagnostic test evaluation and the meaningful 

interpretation of AUC and its asymptotic properties, a proper 

design with broad spectrum of case and control and 

avoidance of bias and control for confounding are necessary 

for a valid and reliable conclusion in the assessment of 

performance of diagnostic tests. Spectrum and bias should be 

considered with careful consideration in study design while 

confounding can be controlled in analysis as well. While the 

adjustment of confounding is widely used in etiologic studies 

in epidemiology, a little attention has been focused for the 

control of confounding in ROC analysis of medical 

published diagnostic studies. 
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