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Novel therapeutic strategy for obesity through the gut 

microbiota-brain axis: A review article 
 

Abstract  

Background: The interaction between commensal bacteria and the host is essential for 

health and the gut microbiota-brain axis plays a vital role in this regard. Obesity as a 

medical problem not only affect the health of the individuals, but also the economic and 

social aspects of communities. The presence of any dysbiosis in the composition of 

the gut microbiota disrupts in the gut microbiota-brain axis, which in turn leads to an 

increase in appetite and then obesity. Because common treatments for obesity have 

several drawbacks, the use of microbiota-based therapy in addition to treatment and 

prevention of obesity can have other numerous benefits for the individual. In this review, 

we intend to investigate the relationship between obesity and the gut microbiota-brain 

axis as well as novel treatment strategies based on this axis with an emphasis on gut 

microbiota. 

Keywords: Gut–brain axis, Obesity, Gut microbiota, Probiotic, Prebiotic, Fecal 
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The gut microbiota can be considered one of the important components of the body, 

having more than 100 times the human genome, weighing approximately 1–2 kg and 

consisting of trillions of living microorganisms are among the reasons for this claim (1, 

2). Altering the composition of gut microbiota and conversion of rich/diverse into 

pathogenic/ abnormal bacteria, called gut dysbiosis, is associated with several disorders 

(e.g., obesity, type 2 diabetes mellitus) (3, 4). Impairment of gut homeostasis and 

nutrient metabolism, reduction of beneficial microbial metabolites and colonization of 

pathogens can be the most main causes of dysbiosis (5). Obesity results from an 

imbalance between energy intake and consumption. In addition, obesity is a 

multifactorial condition and one of the main health problems in societies that increases 

the mortality rate and economic and social damage (6, 7).The outbreak of obesity, which 

is determined by body mass index (BMI) ≥30 kg / m2, has increased intensely in recent 

decades and according to the World Health Organization in 2022, overweight and 

obesity affect almost 60% of adults and nearly one in three children in the European 

region (8). These factors have led to the widespread research of obesity, although there 

are limited treatment options today (9).  

The gut has a complex and bidirectional relationship with the central nervous system 

(CNS), which is termed as the gut microbiota–brain axis and plays a crucial role in 

homeostasis and, consequently obesity. Many studies in this field have been performed 

on humans and animals, the results of which indicate a close and crosstalk 

communication between the gut microbiota and the CNS (10, 11). 
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In addition, the essential role of the gut microbiota in the 

development and evolution of the brain has been proven 

(12-14). Also, disruptions in gut microbiota–brain axis have 

been implicated in the pathogenesis of several neurological 

disorders such as; Parkinson's disease, Autism spectrum 

disorder, Alzheimer's disease, Multiple Sclerosis (MS), 

Amyotrophic Lateral Sclerosis (ALS), Huntington’s 

disease, etc. (15). In this review, we discuss the role of the 

gut microbiota-brain axis in obesity and novel therapeutic 

strategies for this disorder. 

2. Gut Microbiota and Obesity 

Most gut microbiota of healthy adults is composed of 

Bacteroidetes and Firmicutes (2). In individuals with 

obesity compared with fit controls, it has been observed that 

the Bacteroidetes / Firmicutes ratio is decreased (16). 

Moreover, a comparison of the composition of the gut 

microbiota of obese or fit twins revealed, the proportion of 

Firmicutes did not differ significantly and Actinobacteria 

increased, while the diversity of bacteria and proportion of 

Bacteroidetes decreased (17). There has been evidence that 

the composition of the gut microbiota can be affected by 

weight loss (18, 19).  

Moreover, it has been proposed that the gut microbiota 

in obese people may harvest energy more efficiently, which 

may result in more fat accumulation than lean individuals 

(20). Research indicates that colonizing the microbiota of 

mice that were conventionally raised with germ-free mice 

significantly increased body fat even though the mice 

consumed less food (21). Furthermore, the gut microbiota 

donors from obese mice resulted in more weight gain than 

compared with lean donors (20, 22). Nevertheless, the 

findings are not consistent and comprehensive and cannot 

be generalized to humans (23). 

Obesity is associated with chronic low-grade 

inflammation, which is a risk factor for comorbid diseases 

such as diabetes, cardiovascular disease, and cancer (24, 

25). The exact mechanisms of this inflammatory state are 

still unclear, and the gut microbiota is one of the factors 

involved in this condition (26).  

Altered microbiota composition in obese people 

increases the permeability of the intestinal barrier, leading 

to the passage of compounds caused by bacterial lysis such 

as endotoxin (LPS) into the bloodstream. Increased LPS 

levels in the blood stimulate pro-inflammatory cytokines 

and lead to inflammation in the nervous system (27, 28). 

Also, in the study on obese adults compared to the control 

group, after receiving a high-fat meal, serum LPS levels 

were much higher (29), indicating the role of the gut 

microbiota in the inflammatory state of obesity (30, 31). 

 

3. The Microbiota and Gut-Brain Axis 

The gut–brain axis plays an essential role in modulating 

the body's energy. The gut transmits nutritional signals 

through various pathways consisting of the vagus nerve, the 

enteric nervous system (ENS) as well as enteroendocrine 

cells (EECs) (Figure 1) (31). The various microbial 

metabolites that we discuss below, can regulate these 

signals. 

Because EECs are located throughout the intestinal 

epithelium cells, these cells can interact with nutrients. 

Neurotransmitters and hormones such as serotonin (5-

hydroxytryptamine), cholecystokinin (CCK), peptide YY 

(PYY), ghrelin and glucagon-like peptide 1 (GLP-1), 

transmit signals and activate these cells (30). These 

endocrine hormones can affect gut motility, feeding 

(through vagus neurons or ENS), and essential metabolism 

(secretion of insulin, gastric acid, and bile acids) (32, 33). 

Further, metabolites produced by the gut microbiota 

including short-chain fatty acids (SCFAs), can modulate the 

release of these neurotransmitters and hormones (34).  

Sensory signals of the intestine are transmitted to CNS 

via the vagus nerve, and this nerve plays a key role in 

signaling between the gut and the brain. This nerve has the 

longest neurons in the human body (35) and 80% of the 

fibers of these neurons are afferent and 20% of them are 

efferent (36). The anti-inflammatory properties of this nerve 

have been proven, and they are involved in gut motility and 

feeding (37). Alterations in the gastrointestinal tract, 

microbial-derived metabolites, and neurotransmitters 

produced by EECs stimulate or inhibit the vagus nerve (38). 

In this case study, it was found that vagotomy in mice 

affects body weight, indicating the role of the vagus nerve 

in metabolism and food intake (39). Several studies have 

also suggested an association between dysbiosis in obesity 

and vagus nerve signaling (40, 41). 

The ENS is an extensive neural network through the 

gastrointestinal tract and controls the secretion/ assimilation 

of metabolites and gastrointestinal motility. This system can 

transmit information to the CNS both directly and through 

the vagus nerve (42). ENS function is not impaired by the 

loss of the vagus nerve and is a reason for the vagus nerve 

to be independent (43). The gut microbiota may signal the 

ENS through bacterial metabolites and neurotransmitters 

produced by EECs. Researches in germ-free mice found the 

role of gut microbiota in the maturation and function of the 

ENS (44, 45).  

Furthermore, in the gut microbiota-brain axis, 

microbiota-derived metabolites such as, dopamine, 

serotonin, gamma-aminobutyric acid (GABA) and SCFAs 

(lactate, butyrate, propionate, etc.) improve the performance 
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of this axis and thus enhance communication between the 

two organs. The SCFAs have an important role in energy 

homeostasis by binding to G protein-coupled receptors 

(GPR) (46). In the animal study found that SCFAs-mediated 

activation of GPR induced glucose metabolism in both liver 

and muscle and inhibited fat storage in adipose tissues in 

mice (47). Moreover, these metabolites prevent fat 

accumulation in two direct and indirect pathways: In the 

direct pathway, SCFAs enter the CNS by stimulating the 

vagus nerve, which ultimately suppresses food intake (48). 

In the indirect pathway, SCFAs affect satiety by secreting 

PYY and GLP- and interacting with EECs (49, 50). In the 

study on the role of SCFAs in obesity, it was found that 

SCFAs-fed mice did not gain weight induced high-fat-diet 

(51). Studies have also shown the beneficial function of 

SCFAs in metabolism and energy consumption in humans 

(52-54). The role of acetate, butyrate, and propionate in 

obesity, which are among SCAFs, has been studied in 

several types of research. The study found that acetate 

induces anorexia in the hypothalamus and modulates satiety 

bypassing the BBB (55). In addition, a study demonstrated 

that acetate increases thermogenesis and energy 

consumption in obese mice (56). Also, butyrate is an 

essential source of energy for colonocytes (57) and the study 

of mice has shown that butyrate and propionate cause 

intestinal gluconeogenesis (58). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The microbiota and gut-brain axis. The communication between the brain and the gut takes place through 

different pathways as well as the metabolites produced by the gut microbiota, directly and indirectly, effect this axis. 

Microbial-derived metabolisms enter the bloodstream and penetrate the BBB and also effect on the EECs. EECs 

produce neurotransmitters that act on the axis through ENS, Signaling through the vagus nerve. Due to obesity and 

dysbiosis, increased intestinal permeability (Leaky Gut) and LPS cross the intestinal barrier and cause endotoxemia. 

SCFAs, short-chain fatty acids; LPS, lipopolysaccharide; BBB, blood-brain barrier; EEC, enteroendocrine cell; ENS, 

enteric nervous system; CCK, cholecystokinin; PYY, peptide YY; GLP-1, glucagon-like peptide; NTS, nucleus  of 

tractus solitarius.  

 

 

4. Gut Microbiota and Feeding Behavior 

Food consumption is vital for survival, and signals in 

times of hunger and satiety trigger food-motivating 

behaviors that are regulated by pathways that interact 

closely with the gut microbiota (59). 

4.1. Homeostatic Pathway  

The homeostatic pathway regulates energy metabolism 

and energy balance by peptides released from the EECs (e.g. 

CCK, PYY,GLP-1), hormones (e.g. leptin and ghrelin) and 

microbiota-derived metabolites (e.g. SCFAs) (Figure 2) 

(60). The arcuate nucleus (ARC) is a part of the 

hypothalamus that plays a leading role in controlling food 

intake by receiving messages transmitted through the vagus 

nerve and activating the nucleus  of tractus solitarius (NTS) 

(61, 62). Two main neuronal groups are involved in feeding 

and modulating energy. The first group are orexigenic 
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GABAergic neurons and the second group are the 

anorexigenic glutamatergic neurons. GABAergic neurons 

increase food intake by releasing aguti-related protein 

(AgRP) and neuropeptide Y (NPY) and reduce energy 

consumption (63). The glutamatergic neurons reduced food 

consumption by releasing pro-pionemocortin (POMC) that 

express alpha-melanocyte-stimulating hormone (α-MSH). 

This hormone stimulates the melanocortin satiety pathway 

through the melanocortin-4-receptor (MC4R). Also, 

glutamatergic neurons play a role in the expression of 

cocaine- and amphetamine-regulated transcript (CART) 

(63).  

The hormones leptin and ghrelin play a significant role 

in the regulation of hemostatic pathway. Leptin is an 

anorexic hormone that indicates a long-term energy balance 

and is produced by white adipose tissue.  The low plasma 

levels of leptin indicate starvation signals (64). Leptin, after 

passing through the BBB, binds to its receptors in the ARC, 

suppressing NPY/AgRP neurons and stimulating 

POMC/CART neurons, which leads to the induction of 

satiety in the body (65). High levels of leptin do not always 

lead to a reduction in food intake, also a study has shown 

that serum leptin levels in obese adults are higher than in fit 

controls, indicating resistance to the effects of leptin in these 

people (similar to insulin resistance in type 2 diabetes) (66). 

It was also observed that weight loss did not occur with the 

treatment of exogenous leptin in obesity, indicating 

resistance to the effects of leptin (67). The strongest 

hypothesis in the mechanism of resistance of leptin is the 

disruption of hypothalamus signaling (68). Ghrelin is also 

an orexigenic hormone that increases stomach mobility and 

secretes gastric acid (69) and is mainly secreted by EECs in 

the stomach (70). Plasma level of this hormone rises before 

meals and this amount decreases after mealtimes and during 

digestion (71). Also, ghrelin, after crossing BBB, directly 

activates NPY/AgRP neurons and inhibits of POMC/CART 

by releasing GABA (72, 73). In addition to stimulating food 

intake, ghrelin is involved in glucose metabolism, reward 

behavior, and sense of taste (69).  

The gut microbiota is associated with the concentration 

of hormones that regulate food intake behaviors. 

Bifidobacterium spp. and Lactobacillus spp. are among the 

most important genera of the gut microbial composition that 

have a positive correlation with serum leptin levels and a 

negative correlation with serum ghrelin levels (74). It was 

shown that germ-free mice lost more weight than the control 

group after leptin administration, indicating that these mice 

were more sensitive to leptin (75). Also, treatment of 

patients infected with Helicobacter pylori, in addition to 

increasing the ratio of Bacteroidetes/Firmicutes reduced the 

plasma level of ghrelin, which indicates the effect of the gut 

microbiota composition on ghrelin concentration (76). 

Furthermore, a study has proven SCFAs and different 

bacteria, including Bifidobacterium and Lactobacillus 

genera  suppress ghrelin signaling (through the growth 

hormone receptor1a) and motivate leptin production 

(through the activation of GPR41) (77). Administration of a 

probiotic bacterium,  such as Lactobacillus rhamnosus GG 

(LGG) increases the sensitivity to exogenous leptin and 

reduced the proportion of Bacteriaidets/ Firmicutes and 

Proteobacteria in fecal microbiota in mice with dietary-

induced obesity (78).  

Anorexia peptides of CCK, GLP-1 and PYY which are 

secreted by EEC, are also another important factor in 

regulating the hemostatic pathway. CCK is the first 

hormone in human that reduce food intake and provoke 

satiety through activation of the vagal neurons (79). This 

hormone stimulates the digestion of fat and protein through  

the release of digestive enzymes and bile from the pancreas 

and gallbladder (80). A recent study has proven that 

dysbiosis reduces satiety-associated CCK as a result of 

decreased vagus nerve signaling at the NTS (81). GLP-1 

peptide increases and decreases insulin and glucagon 

secretion, respectively, and modulates blood glucose levels 

and also one of the therapeutic targets for type 2 diabetes 

mellitus are GLP-1RAs (GLP-1 receptor agonists) (82). In 

addition GLP-1RAs activate and suppresses POMC/CART 

and POMC/CART neurons, respectively, which induces 

satiety and thus weight loss (83). PYY also plays an 

important role in food intake and increasing the plasma level 

of this peptide after meal inhibits NPY/AgRP and 

subsequently suppresses POMC neurons, which leads to 

anorexia (84). 

SCFAs are among the microbiota-derived metabolites 

that bind to EECs and alter the secretion of intestinal 

hormones (79). Acetate is one of the major SCFAs produced 

by the gut microbiota, which directly reduces appetite by 

affecting the hypothalamus (55), and increased dysbiosis-

induced acetate activates the parasympathetic nervous 

system, increased insulin and ghrelin secretion and as a 

result becomes obesity (85). Numerous studies have shown 

that the production of SCFAs and the secretion of intestinal 

hormones increase with the fermentation of non-digestible 

carbohydrates by the gut microbiota (55). In addition, it has 

been proven that the expression of intestinal satiety peptides 

has decreased in germ-free mice (86). Also, propionate has 

anti-inflammatory properties and promotes the secretion of 

leptin in human adipose tissue (87).
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Figure 3. The gut microbiota affects feeding behavior through the homeostatic pathway. This pathway includes the 

processing of signals from leptin and microbial-derived peptides, CCK, GLP-1, PYY, and ghrelin. Changes in the 

composition of the gut microbiota (dysbiosis) can affect the dopaminergic pathway. ARC, arcuate nucleus; POMC,  

pro-opiomelanocortin; CART, cocaine- and amphetamine-regulated transcript; NPY, neuropeptide Y;  

AgRP, agouti-related protein; SCFAs, short-chain fatty acids; PYY, peptide YY; CCK, cholecystokinin;  

GLP-1, glucagon-like peptide-1; EEC, enteroendocrine cell. 

 

 

4.2 Dopaminergic pathway  

The dopaminergic mesolimbic system mediated brain 

reward signaling. This system, which is concentrated in the 

striatum, is closely related to the hemostatic pathway and 

causes obesity (84). Dopamine is one of the important 

neurotransmitters in neurological processes that perform 

important functions such as cognition, learning and 

motivation (88). Also, dopamine exerts its action by binding 

to specific membrane receptors. Moreover, the dopamine 

function depends on the its release site (89). Large amounts 

of circulating dopamine is produced through the interaction 

between the gut microbiota and EECs in the gastrointestinal 

tract, which reduces intestinal motility and regulates 

mucosal blood flow (90). Dopamine is released after food 

intake and causes a feeling of hedonic reward, which 

stimulates feeding behavior (91). In some cases studies, it 

has been reported that in several dopaminergic brain 

disorders such as anxiety, depression, and Parkinson’s 

disease, the composition of gut microbiota has altered and 

the inflammatory conditions caused by dysbiosis are 

associated with these disorders (92).  

It has been proven that some bacterial species play an 

important role in appetite and food intake by affecting 

reward signals (93). In addition, a human study has shown 

that propionate reduces the reward response to a high-

energy meal suggesting, that SCFAs play a role in 

regulating the dopaminergic pathway (88).  

4.3 Another neurotransmitter  

In addition to dopamine, GABA and serotonin are 

neurotransmitters produced by the gut microbiota that affect 

appetite in the brain and peripherally (94-96). GABA is an 

inhibitory neurotransmitter that controls the hypothalamic 

control of food intake (96) and GABA-producing bacteria 

improve host metabolic condition. Also bacteria microbiota 

including Lactobacillus and Bifidobacterium increase 

GABA levels (97). The study also found that in obese 

individuals, GABA plasma levels increased after fecal 

microbiota transplantation (FMT) from lean donors (98). 

Serotonin is one of the essential neurotransmitters 

involved in regulating satiety, secretion and glucose 

metabolism (99). Serotonin suppresses food intake by 

inhibiting NPY/AgRP and activation of POMC neurons 

(100). EECs are one of the main production sites of 

peripheral serotonin and there is also evidence to regulate 

the peripheral concentration of serotonin through the gut 

microbiota (101). But there is still not enough information 

about the effect of the gut microbiota on central serotonin. 

5. Therapeutic strategy for obesity   

Given the key role of the gut microbiota in the 

modulating appetite, energy homeostasis and host 
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metabolism, it is not unexpected that the microbiota is 

currently a target for the prevention and treatment of 

metabolic disorders such as obesity. However, more studies 

are needed before gut microbiota-based therapy is used as a 

therapeutic tool to suppress appetite and food intake and 

restore metabolic imbalances in obesity and other metabolic 

disorders (102, 103) . We aim to discuss novel microbiota-

based therapy for the prevention and treatment of obesity 

and in this section probiotics, prebiotics, and FMT 

mechanisms of action and their effects on obesity will be 

explained. 

5.1 Probiotics    

Probiotics are living microorganisms that affect health if 

taken in sufficient amounts and the most common bacteria 

used as probiotics are Bifidobacterium and Lactobacillus 

genera (104). Novel sequencing techniques such as 

Metagenomics confirm the significant role of the gut 

microbiota, both locally and systematically. The researchers 

suggested that a better understanding of the probiotics’ 

mechanism of action on host metabolism and homeostasis 

and their effect on gut microbiota-brain axis modulation, 

reduces host sensitivity to obesity and other metabolic 

diseases and also uses it as a treatment option (105).  

Extensive research has been conducted on the 

relationship between probiotics and weight changes in 

animals and humans, and probiotics are considered as one 

of the appropriate treatment strategies for obesity  (106). 

The development of the gut microbiota and proper balance 

between pathogens and the microorganisms in this 

composition are among the effects of probiotics, that play 

this role through 3 mechanisms: antimicrobial activity, 

immunomodulation and intestinal barrier support (105, 

107).  

5.1.1 Antimicrobial Activity 

Reduction of luminal pH, inhibiting of bacterial 

adherence and secretion of antimicrobials substances are 

among the activities of probiotics to prevent pathogens 

colonization in of the gut (108). In addition, hydrogen 

sulfide-production and the decrease of oxidation / reduction 

potential are conditions caused by probiotics and play an 

important role in combating adverse microorganism (109). 

In addition to reducing colonic pH and inhibiting the 

colonization of pH-sensitive pathogens, SCAFs (produced 

by the fermentation of carbohydrates) have also been shown 

to increase the production of butyrate precursors (110, 111). 

In this regard, the study showed that Bifidobacteria spp. and 

Firmicutes spp. were less sensitive to lumen acidic 

conditions compared to Bacteroides spp. (109).  

Also, have been proven using Lactobacillus alters the 

composition of gut microbiota, especially pathogens, by 

decreasing the pH of the lumen resulting in the production 

of lactic acid (112).  

Antimicrobial peptides (AMPs) such as bacteriocins, are 

including products of probiotics that prevent the overgrowth 

of pathogens. For example, several species of Lactobacillus 

species have been described as precursors of different 

bacteriocins (113, 114). Defensins are also among the 

AMPs and cationic proteins and are considered as one of the 

innate components of immunity in various organisms. 

Several studies have shown that various genera of bacteria, 

such as Pediococcus and Lactobacillus, induce defensins 

production (115). 

5.1.2 Immunomodulation 

The gut microbiota affects the innate and acquired 

immune systems by controlling epithelial cells, dendritic 

cells (DCs), macrophages and lymphocytes through various 

mechanisms. 

Epithelial cells can produce signals and cytokines to 

distinguish commensal and pathogenic bacteria from each 

other (116). One study described that the reduced function 

of the epithelial barrier as a result of pro-inflammatory 

cytokines is repaired by the Lactobacillus rhamnosus GG. 

In addition, in acute and chronic inflammation that where is 

in the inner layer of the colon, probiotics such as B. infantis, 

L. casei, L. plantarum and L. brevis are considered as 

treatment candidates (117, 118). 

The DCs interact with gut  bacteria, especially those that 

have access to the M-cells in the Peyer's patches (119, 120). 

DCs also produce IL-10 and TGF-β from regulatory T cells 

and IgA from B cells (121). Several studies have examined 

the effect of probiotics on DCs, and in a study found that 

DCs induce IL-10 from intestinal tissue and also have an 

inhibitory effect on T helper-1 cells (122). In addition to 

DCs, tissue macrophages present antigens to memory T 

cells (123). Bacteria such as Lactobacillus casei modulates 

the production of IL-10 and IL-12 through macrophages, 

indicating the role of probiotic immunomodulation (124). 

The effect of probiotics on lymphocytes has been 

investigated in clinical studies and it has been shown that L. 

reuteri modulates inflammation conditions in the intestine 

by increasing FOXP3 induction and thus the development 

of T regulatory cells (Figure 3) (125). 

5.1.3 Intestinal Barrier Support  

The structure of the intestinal lumen is composed of a 

monolayer epithelium between the mucosal membrane and 

the lamina propria. The mucus on the epithelial layer is 

secreted by the goblet cells and separates the gut microbiota 

from the epithelial cells (126). Increased permeability of the 

intestinal barrier causes abnormal and excessive cross of 

bacteria and their products through the epithelial layer, 
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which causes chronic low-grade inflammation and, as 

mentioned earlier, is contributed to obesity (127). 

Moreover, the disruption of the intestinal barrier is 

associated with diseases such as type 1 diabetes (128), 

celiac (129), enteric infection (130) and type 2 diabetes 

(129). 

Probiotics have been proven that play an important role 

in improving intestinal barrier function by modulating the 

phosphorylation of tight junctional and cytoskeletal proteins 

as well as provoking mucus secretion, and can also prevent 

dysbiosis. In the case study, it was shown that Lactobacillus 

acidophilus and Bifidobacterium infantis restore the 

intestinal barrier function by regulating occludin and 

claudin-1 (tight junctional protein) (127). In addition, 

Lactobacillus acidophilus and S. thermophilus can preserve 

and strengthen of intestinal permeability the epithelial cell 

line invaded by Enteroinvasive E. coli (EIEC) (131). 

Further, several strains of Lactobacilli, also induced mucin 

gene expression in HT29 and Caco-2 cell lines (both of are 

derived from intestinal cancer) and inhibited adherence and 

invasion of the pathogenic E. coli (132). 

5.2 Prebiotics 

Prebiotics are compounds that increase the growth of 

beneficial bacteria in the gut and have a positive effect on 

physiology metabolic function. Prebiotics enhance human 

health by improving the genetic capacity of the gut 

microbial and increasing the production of beneficial 

metabolites (133). For example, studies have shown that 

prebiotics increases the responses of anorexia peptides 

(GLP-1, PYY) and through the hemostatic pathway can 

play an anti-obesity role (134, 135). Prebiotic fibers are the 

main source of SCFAs and play an effective role in the 

production of butyrate. In addition to its anti-inflammatory 

properties, butyrate induces the secretion of mucosal IgA 

from B cells and the development of T regulatory cells (136, 

137).  

Prebiotics increase the growth of Lactobacillus spp. and 

Bifidobacterium spp. to other bacteria in the gut microbial 

populations which are called the bifidogenic effect. In this 

regard, infants feeding with high-fiber supplements increase 

in the ratio of Bifidobacterium spp. compared to the 

prebiotic-free supplement group (138). Moreover, the study 

has shown that high-fiber diets play an important role in 

weight loss by increasing tight junction and decreasing pro-

inflammatory cytokines and endotoxemia (139).  

In addition, prebiotics are involved in the decrease of  

pro-inflammatory cytokine production, reducing the 

luminal pH, increasing the mineral absorption (e.g., Ca2+, 

Mg2+, Fe2+) and inhibiting the growth of pathogenic 

bacteria (105).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Immunomodulation mechanisms of probiotics. Probiotics interact with epithelial cells, DCs, macrophages, B 

cells, Treg and Peyer's patches. DCs, dendritic cells; B cell, B lymphocytes;  

Treg, regulatory T cells; T cell, T lymphocytes. 

 

 

5.3 Fecal Microbiota Transplantation (FMT) 

FMT is a useful solution to change the composition and 

function of the microbiota gut by already infusing the feces 

of healthy individuals to the recipient (140). FMT by 

increasing the diversity of gut microbiota and their 

metabolites such as SCFAs can also have positive 

physiological effects on the recipient (141). 

One of the conditions that increases the chance of 

survival of transmitted bacteria is the preceding presence of 

these strains in the recipient (142). The high efficacy (more 

than 90%) of FMT for the treatment of Clostridium difficile 
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infections (143), as well as its low side effects (mild fever 

and diarrhea) (144), make it a suitable candidate treatment 

for ulcerative colitis, chronic constipation, irritable bowel 

syndrome and other diseases of intestinal dysbiosis (140). 

In the study on FMT from a person donor with a normal 

BMI to an obese recipient with type 2 diabetes, it was shown 

that insulin sensitivity increased. Therefore, in addition to 

obesity, type 2 diabetes mellitus is another disease that FMT 

can have the potential to treat, but many studies need to be 

done to make a definite conclusion (141). 

Conclusions  

Gut -brain axis is a strong and vital link between the brain 

and the gut, that plays a prominent role in increased appetite 

and consequently obesity. Modulating the gut microbiota is 

achieved through mechanisms such as probiotics, 

prebiotics, and FMT that are new and appropriate 

therapeutic strategies for obesity. Also, probiotic can 

develop the gut microbiota and consequently, treatment of 

obesity through pathways including; antimicrobial activity, 

immunomodulation and intestinal barrier support. Further, 

the use of these strategies and clarifying their mechanisms 

and impacts on human health requires further investigation. 
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