TY - JOUR T1 - The assessment of function, histopathological changes, and oxidative stress in liver tissue due to ionizing and non-ionizing radiations TT - JF - babol-caspjim JO - babol-caspjim VL - 11 IS - 3 UR - http://caspjim.com/article-1-2131-en.html Y1 - 2020 SP - 315 EP - 323 KW - EMF KW - Ionizing Radiation KW - Liver KW - Liver Function Tests KW - oxidative stress N2 - Background: Compared to past decades, humans are exposed to rapidly increasing levels of radiofrequency electromagnetic radiations (RF-EMF). Despite numerous studies, the biological effects of human exposure to different levels of RF-EMF are not fully understood yet. This study aimed to evaluate the bioeffects of exposure to "900/1800 MHz" and “2.4 GHz" RF-EMFs, and x-rays alone as well as their potential interactions, i.e. inducing simple additive, adaptive, or synergistic effects. Methods: 120 Wistar rats were randomly divided into ten groups of 12 each. The rats were exposed to RF-EMF, 10 cGy, and 8 Gy x-rays, a combination of these exposures, or only sham-exposed. The levels of liver enzymes were determined in serum samples by an autoanalyzer. Moreover, the histopathological changes, and the levels of malondialdehyde (MDA), nitric oxide, ferric reducing antioxidant power, total thiols, and protein carbonyl (PCO) were measured. Results: Among the markers of liver function, gamma-glutamyltransferase was not associated with irradiation but, aspartate transaminase, alanine transaminase, and alkaline phosphatase showed some levels of association. MDA and PCO levels after 8 Gy irradiation increased, but pre-exposure to RF-EMF could modulate their changes. At the cellular level, the frequency of lobular inflammation was associated with the type of intervention. Conclusion: The exposure to both ionizing and non-ionizing radiations could alter some liver function tests. A short term pre-exposure to RF-EMF before exposure to an 8 Gy challenging dose of x-rays caused the alterations in oxidative stress markers and liver function tests, which indicate that oxidative stress is possibly involved in the adaptive response. M3 10.22088/cjim.11.3.315 ER -