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Abstract 

This review basically provided a conceptual framework for sample size calculation in 

epidemiologic studies with various designs and outcomes. The formula requirement of 

sample size was drawn based on statistical principles for both descriptive and comparative 

studies. The required sample size was estimated and presented graphically with different 

effect sizes and power of statistical test at 95% confidence level. This would help the 

clinicians to decide and ascertain a suitable sample size in research protocol in order to 

detect an effect of interest. 

Key words: Sample size, Comparative studies, Continuous outcome, Binary outcome, 

Effect size, Statistical power.  
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In designing epidemiologic studies, sample size calculation has an important role to 

detect an effect and to achieve a desired precision in estimates of parameter of interest (1-

4). It is a key step that needs to be considered early in a study protocol (2). This 

particularly helps investigators to devote budget and resources for study. A small sample 

size will not provide a precise estimate and reliable answers to study hypothesis (5). On 

the other hand, a large sample size makes difficulty in study management thus, wasting 

both time and resources (2). Most journals and funding agencies now require a justification 

for sample size enrolled into a study and investigators must present the principles of 

sample size calculation to justify these numbers (4).  

The clinical researchers frequently ask how many subjects are really needed for a 

study. Calculations for answering this question are not obviously appealing and sometimes 

the determination of adequate sample size is mysterious for clinicians. Conceptually, the 

four major determinants of sample size are: i ) the magnitude of effect of interest to be 

detected in comparative studies or the degree of marginal error of estimate in descriptive 

design; it is intuitively obvious that if one wishes to detect a small effect size, a higher 

sample size is needed; ii) the variation (i.e. standard error) of study outcome; with higher 

variation, a greater sample size is required; iii) confidence level; a higher confidence level 

in detecting a desired effect, a greater sample size should be included into the study; the 

confidence level is usually fixed at 95%; iv) study power; given a desired effect size to be 

detected with a confidence level (e.g. 95%), and how much power is needed (4-5). If one 

wishes to have more power for statistical test to detect a desired difference, a higher 

sample size is required. In addition, the width of confidence interval is inversely associated 

to the number of subjects studied, the more subjects we study, and the more precise we will 

get about where the true parameter of population lies (4-8). Thus, how many subjects do 

we need to study in order to get an estimate as close as true value of parameter of interest? 

In clinical trials, a similar question is raised on how many subjects are needed to be treated 

in order to get a clinical useful treatment effect (9-12). Despite the conceptual framework 

of these four essential elements of sample size calculation, the formula for sample size 

calculation may vary in different study designs with different outcomes and hypotheses. 
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Thus, the researchers and clinicians may have trouble for 

sample size calculation in their studies. This review was 

provided conceptually for clinicians who have background 

of 2 credits of biostatistics course in their academic 

curriculum. In this article, the critical elements of sample 

size were discussed conceptually and the formula for sample 

size calculation was drawn and classified with respect to the 

study design and outcome of interest. An illustration was 

provided of how and why these equations are derived. We 

also calculated sample sizes for various effect sizes for some 

conditions and then, the required sample sizes were tabulated 

and presented graphically. 

Sample size in estimating the mean of continuous 

outcome- descriptive studies  

Suppose an investigator may wish to estimate the mean 

of continuous outcome in a population in which the marginal 

error in estimates (i.e. the difference between true parameter 

and its estimate) does not exceed from pre-determine value 

of d. This marginal error is sometimes called as precision of 

estimate. For example, if we denote µ as parameter of mean 

of study population and  denotes its estimate, then with 

maximum marginal error of d in estimate, we have│ -µ│≤d. 

Based on confidence interval for mean (13-15), we have 

│  - µ│=  ≤d. Finding the necessary sample size 

requires solving this equation with respect to n. The result is  

 

n=            where for α=0.05 (i.e. 95% confidence level) and 

=1.96 for two side tests; σ
2
 represents the variance of 

continuous outcome (σ is the standard deviation (SD). Notice 

that the large value of σ yields n to be large as does a small 

value of d. The use of this formula is required that an 

estimate of SD of study outcome is provided. One possibility 

is to carry out a pilot study and use the resulting sample SD. 

Another possibility is to use published data or even simply to 

make guess about the value of SD which might result and to 

be used in calculating n. For a population distribution that is 

not too skewed (13), dividing the normal range by 4 gives a 

rough idea of the SD (σ =  ). As it is intuitively 

appealing, the sample size has inversely related with square 

of marginal errors (i.e. d
2
). If the marginal error becomes 

half, the sample size increases 4 times.  It has also a positive 

association with variation of study outcomes (i.e. σ
2
) and the 

square of Z score for confidence level as well.
  
For example, 

if a researcher knows the normal range of cholesterol in 

population as 180-220 mg/dl and he wants to estimate the 

mean of cholesterol in population while the marginal error in 

estimate does not exceed than 1 mg/dl, then the required 

sample size is as follows:  

                                        σ= =10. n= ×10
2
=385 

One could consider δ=  as an effect size; then  

                                        n=  =   

Sample size in estimating the proportion of binary 

outcome- descriptive study 

 A similar discussion is relevant for sample size 

calculation in estimating the prevalence (or proportion) of a 

binary outcome in population. Again, assuming a study 

objective was focused on estimating the prevalence (or 

proportion) of an outcome while the marginal error of 

estimate does not exceed from a pre -determine value of d 

with 95% confidence level. Let P denote the proportion of 

interest in population and  denotes its estimates. The 

investigator constrains the marginal error as│  -P│≤d. Then 

based on (1-α) % confidence interval for parameter P (13-

15), the result is 

                                              ≤d 

 

By solving this equation with respect to n, the required 

sample size is as follows:  

                                                n=    

 

Where (1- ) is a variance component of binary 

outcome and it is substituted as σ
2  

(13).  Unfortunately, the 

use of this formula requires a pre ascertained value of . One 

possibility is to use a similar published data or to carry out a 

pilot study. Also, a pre determined value of maximum 

marginal error (d) in estimate should be allocated by 

investigator from clinical and statistical judgment. In fact, 

the degree of this error depends on magnitude of proportion 

(or prevalence), for example by statistical judgment, d 

should not exceed from a quarter of P (d≤ P).  
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For example, a researcher wants to estimate the required 

sample size for prevalence of hyperlipidemia in population 

in which the marginal error of its estimate does not exceed 

than 2% with 95% confidence level. If the previous 

published data showed that this rate was 20%. Then, the 

sample size is calculated as 

                                                    n= =1537 

For unknown P, a conservative solution is replacing 

P=0.5, then the maximum sample size is estimated with a 

given marginal error and confidence level since P (1-P) 

never exceeded than 0.25. This conservative estimate is only 

recommended for a common outcome. Thus 

 

                   n=  = 
 

   

 

Sample size for comparative studies: testing population 

mean with fixed value 

In comparative study, a researcher wants to detect a 

specific effect that is measured by difference in mean of a 

population and a fixed hypothesized value (µ1-µ0) with (1-α) 

% (e.g. 95%) confidence level and (1-β) % power of 

statistical test. In testing the null hypothesis H0: µ=µ0 versus 

an alternative hypothesis H1: µ≠µ0 (e.g. µ=µ1), the two type 

errors may occur in making decision. The type 1 error occurs 

when Ho is rejected while H0 is really true. We denote this 

type of error as α (e.g. α=0.05) and 1-α (e.g. 95%) is called 

confidence level. The other error is called type 2 error that 

occurs when we accept H0 while H1 is really true and it is 

denoted by β and 1-β is called statistical power; it means the 

probability of rejecting H0 when H0 is not true (In fact, H1 is 

true, i.e. µ=µ1). A widely used convention for acceptable 

levels of power is 80% (i.e. β=0.20). Conceptually, this 

means assuming the null hypothesis is true, the researcher 

has 80% chance of finding statistical significant differences. 

On the other hand, indicating that the researcher has only 

20% chance of failing to find significant differences, if in 

fact they exist. If we have low power (i.e. high β error), then 

an effect that is ascertained by H1 (i.e. µ1-µ0) can not be 

detected. Thus, for the detection of a specific effect by 

statistical test, in addition to type 1 error, type 2 errors (its 

compliment denotes as power) also threats study findings. 

These two types of errors simultaneously influence the 

required sample size. 

Under the H0, Z-score is defined as =  and thus, 

= -µ0 

While under H1, Z-score is Z1-β=  and since Z1-β = -

Zβ  ; thus, -Zβ   = -µ1 

By subtracting the two above equations, one can easily 

derive it as 

                                   ( + Zβ  )=µ1-µ0 

 By solving the above equation with respect to n, thus 

 

                                   n =   

 

We consider δ=  as an effect size. Thus  

 

                                  n=  
  

Where =0.84. 

 

Sample size for comparative study of two population 

means- continuous outcome 

In hypothesis, testing of two populations means H0: 

µ1=µ2 versus H1: µ1≠µ2 (i.e. µ2-µ1 ≠0), as we explained 

previously, the Z-score under two alternative hypotheses is 

as follows: 

Under H0: =   

 

 

Under H1: -Zβ =  

 

Let us assume σ1=σ2 and n1=n2 =n then by subtracting the 

two above equations and solving with respect to n, the 

required sample size for each group would be drawn as 

follows: 

                  n =  

 

where =1.96 (α=0.05), Zβ =0.84 (β=0.20) 

One would consider δ=  as an effect size of 

interest. Thus, for detecting the difference of two population 

means with effect size of δ and 95% confidence level and 
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80% power, the required sample size for each group are as 

follows: 

                            n= 
  

Sample size for testing proportion with fixed value- 

binary outcome 

 Let us suppose an investigator wishes to test a proportion 

of binary outcome in a single population with a fixed value: 

Testing hypothesis H0: P=P0 versus H1: P≠ P0 (i.e. P=P1). 

This investigator needs to know how many sample sizes 

should be included in the study. For this question, he should 

answer first to the four determinants of sample size: 1) type 

1 error under H0, 2) study power i.e. the probability of 

rejecting Ho when a real difference exists (i.e. H1 is true); 3) 

the magnitude of difference (P1-P0) should be apparent as 

real difference (or significant); 4) an estimate of SD of 

binary outcome that is determined under H0: P=P0 and it is 

formulated by P0 (1-P0). With similar principles as discussed 

for continuous outcome, the Z-score under the H0 and H1 can 

easily be written and the required sample size is drawn as 

follows: 

 

                      n=  

 

Sample size for comparative study of two population 

proportions- binary outcome 

Suppose a researcher has a plan to compare two 

proportions using two independent samples from two 

populations. For testing hypothesis Ho: P1=P2 versus H1: 

P1≠P2, for detecting a specific effect P1-P2 with 80% power 

and 95% confidence level, he wants to know how many 

samples should be recruited in the study. Let n be the sample 

size for each group and P1 denotes the proportion in study 

group and P2 for control, a similar analogy and principle as 

discussed above can be applied for comparison of two 

proportions. Z-score under H0 and H1 can be written easily 

and then the formula for sample size drawn is as follows:  

 

n=  where  

 

   

A formula that is simpler than above, and for practical 

purposes an approximately equivalent sample size of each 

group is given by    

                                      n=  

 

In analogy to comparison of two means, the effect size 

(or standard difference) for comparison of two proportions is  

 

                                                     δ=   

Thus n =  

Sample size and study design  

In cross sectional studies, P1 and P2 represent the 

prevalence of outcome of interest in two populations. For 

example, P1 and P2 are the prevalence of hypertension in 

obese and non-obese populations, respectively. In 

prospective study (either cohort or clinical trials), P1 and P2 

are the risk of developing an outcome (or incidence rate) in 

study group (exposed) and control group (non-exposed), 

respectively. While in case-control design, P1 and P2 are the 

proportion of exposure among cases and control, 

respectively. An investigator may have no idea about the 

proportion of exposure among cases in retrospective studies 

or the risk of developing an outcome among exposed in 

prospective studies while he knows about these risks in 

control group. It is possible to estimate P2 using P1 (the 

proportion of exposure in control group or the risk of 

outcome in non-exposed group) and odds ratio (OR) or risk 

ratio (RR). These two latter indexes are the measures of 

association between exposure and outcome in case control 

and prospective studies, respectively and the researchers may 

know P1 and the estimates of these effect measures from 

literature. Then P2 can be estimated using the following 

formula (16):  

                                 

Or 

 

                             

OR is the odds ratio determined in the case-control study 

and RR is the risk ratio in cohort study or clinical trial. Thus, 

by computing P2 using the above formula, one can apply the 
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formula for comparison of two proportions to calculate  

the sample size for binary outcome either in cross- sectional study 

or case control / prospective study.  Sample size calculation 

has been extended in regression and correlation analysis (6). 

This has been paid a little attention for practical purpose in 

clinical researches. A similar strategy can also be applied to 

derive sample size formula for diagnostic studies in the 

analysis of receiver operating characteristic (ROC) curve in 

estimating and testing of diagnostic accuracy for single 

modality and comparative study of two modalities (17-18). 

This is behind the scope of this article and for more detailed 

information; the interested readers are referred to some 

published articles (19-23). 

Results of sample size calculation 

We calculated the sample size for different combinations 

of effect size and power using excel software. The calculated 

sample sizes were presented in tables 1, 2, 3 and figures 1, 2, 

3 as well.  

 

Table 1. The calculated sample sizes for different combination of prevalence and the maximum  

marginal errors in estimating prevalence rate (or proportion) 

    Maximum marginal errors   

Prevalence d=1/4 P d=1/5 P d=1/6 P d=1/7 P d=1/8 P d=1/9 P d=1/10 P 

0.001 61404 95944 138159 188050 245617 310858 383776 

0.005 12232 19112 27521 37459 48927 61923 76448 

0.01 6085 9508 13691 18636 24340 30806 38032 

0.02 3012 4706 6777 9224 12047 15247 18824 

0.03 1987 3105 4472 6086 7950 10061 12421 

0.04 1475 2305 3319 4518 5901 7468 9220 

0.05 1168 1825 2628 3577 4671 5912 7299 

0.06 963 1505 2167 2949 3852 4875 6019 

0.07 817 1276 1837 2501 3266 4134 5104 

0.08 707 1104 1590 2165 2827 3578 4418 

0.09 621 971 1398 1903 2486 3146 3884 

0.10 553 864 1245 1694 2213 2801 3457 

0.12 451 704 1014 1380 1803 2282 2817 

0.14 378 590 850 1156 1510 1911 2360 

0.16 323 504 726 988 1291 1634 2017 

0.18 280 438 630 858 1120 1418 1750 

0.20 246 384 553 753 983 1245 1537 

0.22 218 341 490 667 872 1103 1362 

0.24 195 304 438 596 779 985 1217 

0.26 175 273 394 536 700 886 1093 

0.28 158 247 356 484 632 800 988 

0.30 143 224 323 439 574 726 896 

0.32 131 204 294 400 522 661 816 

0.34 119 186 268 365 477 604 746 

0.36 109 171 246 335 437 553 683 

0.38 100 157 226 307 401 508 627 

0.40 92 144 207 282 369 467 576 
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Table 2. The required sample size for estimation and comparative study of mean with respect to effect size and power 

Effect Size n  for estimation of mean n for each group in comparative study 

80% power 90% power 

0.01 38416 156800 209952 

0.02 9604 39200 52488 

0.03 4268 17422 23328 

0.04 2401 9800 13122 

0.05 1537 6272 8398 

0.06 1067 4356 5832 

0.07 784 3200 4285 

0.08 600 2450 3281 

0.09 474 1936 2592 

0.1 384 1568 2100 

0.2 96 392 525 

0.3 43 174 233 

0.4 24 98 131 

0.5 15 63 84 

0.6 11 44 58 

0.7 8 32 43 

0.8 6 25 33 

0.9 5 19 26 

1 4 16 21 

 

Table  3. The calculated sample size for each group with respect to risk ratio - RR (or OR)  

and P1
├
 with 95% confidence level and 80% power 

RR 

or OR 

n 

P1=0.05 

n 

P1=0.10 

n 

P1=0.25 

n  

P1=0.5 

n 

P1=0.75 

n 

P1=0.90 

n 

P1=0.95 

1.5 1687 910 465 387 570 1258 2429 

2 515 282 152 136 214 491 960 

2.5 271 151 84 80 133 313 618 

3 176 99 58 58 99 239 474 

3.5 129 73 44 46 81 199 396 

4 100 58 36 38 70 174 348 

4.5 82 48 30 34 63 157 315 

5 69 41 26 30 58 145 292 

5.5 60 35 23 28 54 136 274 

6 53 31 21 26 50 129 261 

6.5 47 28 19 24 48 123 250 

7 43 26 18 23 46 119 241 

7.5 39 24 17 22 44 115 233 

8 36 22 16 21 43 112 227 

8.5 33 21 15 20 42 109 221 

9 31 19 14 19 41 107 217 

9.5 29 18 14 19 40 104 213 

10 27 17 13 18 39 103 209 

                                ├ P1 represents the proportion for reference group 
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Table 1 shows that the sample size substantially varies 

with respect to marginal errors and prevalence rate in 

estimating purpose. For a rare outcome that its rate is about 1 

per 1000, a very high sample size is required and it strongly 

depends on the marginal error and  varies from 61404 to 

383776  for moderate (d≤ P) and very low marginal error 

(d≤ P) respectively. As prevalence rate increases to 10%, 

the requirement sample size substantially decreases to 553 

for d≤  P and 3457 for d ≤ P. For a more common outcome 

(P=30%), the sample size was calculated as 143 and 896 for 

moderate and very low marginal errors, respectively. figure 1 

also shows the variation of sample size with respect to 

maximum marginal error of estimate. The second column of 

table 2 represents the required sample size for purpose in 

estimating the mean of continuous outcome in a single 

population with respect to effect size. The more reasonable 

effect size based on clinical and statistical judgment is about 

0.1 that yielded sample size of 384 while the least effect size 

(0.01) corresponded to very low marginal errors, increased 

sample size substantially is not of practical convenience. In 

contrast, high effect size produced very small sample size 

and the results imprecise estimate. The columns 3 and 4 

represents sample size in comparative study of two modalities for 

comparison of two means with different statistical powers. 

As expected, in a comparative study, the testing hypotheses 

H0: µ1=µ2 versus H1: µ1≠µ2, given a similar effect size, a 

greater sample size of each group is needed compared with 

estimating purpose. For moderate effect size 0.2-0.4, the 

required sample size varies from 96 to 382 for 80% power 

and from 130 to 525 for 90% power. Obviously, for testing 

hypotheses of single modality with fixed value: H0: µ=µ0 

versus H1: µ≠ µ0, the calculated sample size becomes half of 

those shown in column 3 and 4 (it was not shown in table 2). 

Table 3 represents the calculated sample size with respect to 

effect measure of RR and OR is used in cohort studies/ 

clinical trials and case-control studies respectively. As a 

general rule, for a given power (80%) and confidence level 

(95%), in detecting a lower effect measure (RR<2), a greater 

sample size is required. In addition, the sample size is influenced 

by the rate of outcome (prospective study) or rate of 

exposure (case-control study) in reference group (P1). For a 

given effect measure, a higher sample size is required for 

P1=0.95. With respect to various P1 examined, a smaller sample 

size was calculated for P1=0.5 when other factors were fixed. 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Sample size with respect to prevalence rate and 

maximum marginal error for estimation of prevalence 

 

 

 

 

 

 

 

 

 

 

Figure 2. Sample size with respect to effect size  

(d/σ) for estimation of mean 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Sample size with respect to effect size (μ1- μ2/σ) and 

power in comparative study of two population means 
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Discussion 

We calculated the required sample size with different 

magnitudes of effect size and the power of statistical test. 

The results show that detecting a small effect size, a higher 

sample size is needed for a given statistical power. In 

particular, for an effect size of 0.01, the sample size 

increases dramatically that is inconvenient for practical 

purpose of sampling and data management. It seems that 

moderate effect size of 0.1- 0.4 is more reasonable from 

practical conveniences for clinical trials that yields an 

intermediate level of sample size. The effect size of near to 1 

is very high and close to 0.01 is very low for the purpose of 

sample size calculation. Thus, it is not recommended to 

detect very low effect or to allocate very low marginal error 

in estimates for sample size calculation because of practical 

inconvenience, although, such calculated sample sizes result 

to a more precise estimates and high statistical power. 

Obviously, for a given effect size, a higher statistical power 

yields greater sample size. On the other hand, with a small 

sample size, even a real effect exists in comparative study; 

the statistical test has low power to detect it (24-25). Thus, 

conceptually, one should ascertain enough sample size in 

order to detect a given effect with a given power and 

confidence level. Alternatively, one may calculate the power 

of statistical test for a given effect size and allocated sample 

size as well in order to be confident that the sample size is 

good enough for the investigation of hypotheses under study. 

As we have shown, for detecting a small difference of 

effect (e.g. the difference in means of two populations or two 

proportions), the sample size increases dramatically for a 

given power and confidence level. Alternatively, for 

detecting a large effect, we do not need a large sample size 

but if such expected effect was not revealed in study 

findings, the estimated sample size has low power to detect 

the difference that was apparent in study. In particular, type 

2 error (β) occurs when study suffers from lack of enough 

sample size (24). This error is the probability of accepting 

H0 when alternative hypothesis (H1) is in fact true and the 

compliment of β (i.e. 1-β) is the statistical power i.e. the 

probability of rejecting H0 when H0 is not true (i.e. H1 is 

true). We used two side tests for sample size calculation 

instead of one side test since two side tests are most often 

employed in medical and behavioral research. The use of one 

side test remains controversial for some statisticians arguing 

their use should never be applied when it is in doubt. 

Nevertheless, in doubtless instances, the unidirectional 

hypothesis may be appropriate (1). Furthermore, for a given 

sample size and effect size, a greater statistical power can be 

achieved in detecting effect size by employing one side test.  

A comparison of sample size for three different 

scenarios: estimation, testing the mean of single population 

with fixed value and a comparative study of two modalities, 

as expected, the latter condition results to a larger sample 

size for a given effect size and confidence level since the 

sample size formula includes the variation of two 

populations. Generally, the required sample size is larger for 

testing purposes versus estimating, since both type 1 and 

type 2 errors simultaneously are incorporated in sample size 

calculation for testing. 

In some senses, it seems that the sample size may depend 

on a study design for binary outcome. While the proportions 

P1 and P2 measure the rate of study outcome for prospective 

study, they determine the rate of exposure in case-control 

study. But the sample sizes are more influenced by study 

hypothesis, type of outcome and the effect measure to be 

detected. In particular, when a study involving with binary 

outcome (or exposure), the sample is affected by RR (or OR) 

as the effect measure used in prospective and retrospective 

studies. As expected, for detecting a higher RR (e.g. 

RR=10), we have shown that the required sample is very 

small except for situation P1≥ 0.90. Such an effect should not 

be considered in sample size calculation since it may not be 

revealed in study findings. The author recommends the size 

of effect of RR (or OR) as 1.5-2.5 in sample size calculation 

unless a strong evidence exists for a higher effect. 

Furthermore, for a given effect size (RR) and power, a larger 

sample size is required for P1=0.95 since there is no more 

room for P2, (assuming P2>P1) and the maximum effect to be 

detected is about 0.05.  
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 Lack of sufficient sample size in epidemiologic studies 

specifically in clinical trials does not yield a valid conclusion 

(9-11). Some studies in clinical trials failed to show a 

significant effect (3). One possible explanation is the low 

power of statistical test because of small sample size used. In 

addition, the estimation of sample size early in research 

protocol helps the investigator to provide enough resources 

such as budgets, human resources, and time. On the other 

hand, a very large sample size is allocated arbitrary into the 

study, it might waste the resources and it is time consuming 

and does not provide additional information. As addressed, 

the sample size must be calculated based on statistical 

principles with reasonable effect size not based on 

previously published studies.  

One might argue the sample size was ascertained based 

on the number of subjects used in previously published 

studies. If these studies did not reach a significant valid 

result, how can one be sure the allocated sample size is 

enough unless one uses the statistical principles for sample 

size calculation? In addition, the difference of variation of 

study outcome due to socioeconomic, cultural status, 

genetical and biological variations add the difficulty of such 

sample size in detection of effect. Even the effect size might 

be different in various conditions. Thus, for each study 

protocol, the sample size should be calculated independently. 

This review will help the clinicians to decide and calculate a 

suitable sample size in their research protocol in order to 

detect an effect of interest with respect to study design and 

outcome of interest. 
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