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Abstract 

Background: Confounding can be thought of as mixing the effect of exposure on the risk 

of disease with a third factor which distorts the measure of association such as risk ratio or 

odds ratio. This bias arises because of complex functional relationship of confounder with 

both exposure and disease (outcome). In this article, we provided a conceptual framework 

review of confounding issues in epidemiologic studies, in particular in observational 

studies and nonrandomized experimental studies. We have shown in 2 by 2 tables with 

analytical examples how the index of association will be distorted when confounding is 

present. The criteria, source of confounding and several points in confounding issues have 

been addressed. The advantages and disadvantages of several strategies for control of 

confounding have been discussed.  

 

Keywords: Confounding, Bias, Observational studies, Non-randomized experimental 

studies, Risk ratio, Statistical models, Adjustment  

 

 

Caspian J Intern Med 2012; 3(3): 488-495 

 

Many epidemiologic studies are planned to examine the causal association of 

exposure with the outcome of interest using non-experimental (observational) or 

experimental data (1). By definition, for judging causal inference, the following three 

criteria simultaneously should be satisfied (2): 1) exposure must be proceeded from 

outcome (temporal sequence); 2) a statistical association should be revealed between 

exposure and outcome i.e. any changes on exposure status yields changes on outcome; 3) 

the apparent association must be valid. It means that the derived association should not 

result from any systematic errors such as confounding, information bias, selection bias and 

random errors as well. The strength of association between exposure and outcome depends 

on the magnitude of risk ratio (RR) or odds ratio (OR) that is revealed in the study. 

Confounding is the main issue in observational etiologic studies and non-randomized 

interventional studies as well (3-5). In the context of epidemiology, confounding is a 

source of bias in estimating causal association and it corresponds to a lack of 

comparability between the exposed and non-exposed groups (or cases and controls) (6). In 

this context, confounding is described as a mixing of extraneous factor (called confounder) 

with the effect of exposure of interest (5, 6). This happens in epidemiologic studies with 

non-experimental data. In the context of biostatistics, confounding refers to magnitude of 

an association parameter estimation with respect to adjusting versus not adjusting for 

extraneous variables (called confounding) (2, 6, 7). The presence of imbalance covariate 

(that is called confounder) between the compared groups (e.g. exposed and non-exposed or 

cases and controls) distorts the association of interest if one does not take it into account in 

design or analysis. The mixing effects of exposure and confounder result from a 

complexity of inter relationship of confounder with exposure and outcome as well (5).  
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In observational studies, there is always a possibility to 

influence such extraneous variables on the outcome of 

interest because of lack of comparability of two groups at 

baseline (6, 8, 9). In randomized clinical trials (RCT), causal 

inference emphasizes the importance of randomization in 

assuring the comparability while in an observational study 

no such assurance is available thus, the issues of 

confounding become predominate (6). This article provided 

a conceptual framework of review of methodological issues 

on the role of confounding in analytical epidemiologic 

studies. 

Definition of Confounding  

Mixing the effect of exposure (or treatment) on 

occurrence of disease (or outcome) with a third factor (called 

confounder) happens when the third factor is an independent 

risk factor for disease and also it should have association 

with exposure independently (4, 5). Such a covariate should 

not be at intermediate pathway relation between exposure 

and disease (5). Depending on the inter-relation between 

confounder with exposure and outcome, the lack of its 

control is resulted as over or under estimate of measure of 

association. Complexity of confounding variable has arisen 

via two directional associations of confounder with exposure 

and outcome. By definition, the three conditions should be 

met for a factor to be confounder. i) Confounder factor 

should associate with exposure i.e. it should have imbalance 

distribution between the exposed and the non-exposed 

groups. For example, age is a cofounder if the distribution of 

age differs between exposed and non-exposed groups.  ii) 

confounding variable should be an independent risk factor 

for disease (or outcome) of interest. This inherent association 

must be present in both the exposed and the non-exposed 

groups. iii) The association of confounder and disease (or 

outcome) should not be resulted via exposure (5) i.e. this 

association should not be an intermediate pathway relation 

between exposure and outcome. If any of these three 

conditions is not satisfied, the mixing effect with exposure 

will not occur and the third variable is no longer a 

confounder. 

Examples of Mixing Effect with Confounding  

Let us assume a cohort study was designed to determine 

the association between physical activity and myocardial 

infarction (MI). Age can be considered as a confounder that 

distorts the magnitude of this association since the 

distribution of age may differ between those with and 

without physical activities and the group with physical 

activities may be younger thus, age is associated physically 

(condition 1). The younger subjects may have a lower risk of 

MI for both with and without physical activities. Thus, age is 

inherently a risk factor for MI (condition 2). In addition, the 

effect of age is not on a pathway relation of physical 

activities and MI (condition 3). So, the lack of control of the 

effect of age, the apparent association between physical 

activities and MI is confounded by age. In this example, the 

question will arise in the distortion of this association to 

which direction occurs. Since the physical active group is 

younger and the younger people has a lower risk of MI, 

consequently, the mixing effect of age with physical 

activities leads to the exaggeration of the inverse association 

between physical activities and MI. In this example, we call 

age as a positive confounder. In the context of this example, 

gender also can be considered as confounding since the level 

of physical activities differs between men and women, and 

men have a greater risk for MI both with and without 

physical activities. The lack of control for gender leads to the 

dilution of the inverse association between physical activity 

and MI. Thus, gender is a negative confounder. In analytical 

epidemiologic studies, age and gender are associated with 

several lifestyles, physical and chemical exposures and they 

are also risk factors for disease (or outcome) of interest. 

Thus, their rules as confounder variables should be taken 

into account.  

Crude and Specific Effect: Examples of 2 by 2 Tables 

In this section, with several hypothetical examples, we 

have shown how collapsing data over different stratum of 

confounding factor can distort the risk ratio in analysis 2 by 

2 tables. 

Example 1. We have shown an example that the lack of 

control for confounding (collapsing data in a single 2 by 2 

table) produces a false association in table 1. For example, in 

a cohort study, an investigator wishes to determine the 

association between consumption of vitamin and depression, 

the collapsing data over the different stratum of covariate of 

ages is shown in table 1. 

Table 1. Association of vitamin and depression in 2×2 

table 

Depression           Vitamin 

+ - 

+ 

- 

260 

840 

1220 

880 

Total 1100 2100 

Crude RR=  
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Table 1.a Association of vitamin and depression among 

youth in 2 ×2 table 

 

Depression           Vitamin 

+ - 

+ 

- 

200 

800 

20 

80 

Total 1000 100 

 

Age specific RR=   

 

Table 1.b. Association of vitamin and depression among 

old in 2 ×2 table 

Depression           Vitamin 

+ - 

+ 

- 

60 

40 

1200 

800 

Total 100 2000 

 

Age specific RR=  

 

   As table 1 shows, the calculated crude estimate of 

RR=0.41 revealed that vitamin reduced the risk of 

depression about 59%. While in tables 1.a and 1.b, when 

data are stratified with respect to age group, the age specific 

effect of vitamin on depression does not longer appear. For 

both young and old people, the age specific RR is equal to 1 

that shows there is no association between vitamin D and 

depression. Thus, the crude estimate of protective effect of 

vitamin D on depression based on collapsing data is 

confounded by age. Regarding to the definition of 

confounding, one can see whether the confounding criteria 

are present in these data. In young subjects,   

were vitamin users while for the old people, there 

were . Therefore, age is associated with 

consumption of vitamin (condition1). Also, age is a risk 

factor for depression among with and without vitamin users. 

Tables 2 shows that among the vitamin users, the incidence 

rate of depression is   and  in young 

and old people, respectively. Also, among the non-users, the 

risk of depression is  and  in young 

and old people, respectively. Thus, in both groups, the old 

people have higher risk for depression (condition 2). 

Obviously, age effect was not in an intermediate pathway 

relationship between vitamin consumption and depression 

(condition 3). 

Example 2. This example shows that confounder partially 

distorts the association. For example, in a cohort study, the 

effect of smoking on occurrence of heart disease, the results 

of crude data (collapsing on stratum of confounder) is shown 

in table 2. 

 

Table 2. Association of smoking and heart disease in 2 ×2 

table  

Heart disease           Smoking 

+ - 

+ 

- 

200 

800 

50 

950 

Total 1000 1000 

 

RR=  

 

Table 2.a. Association of smoking and heart disease in 

patients with diet in 2×2 table 

Heart disease           Smoking 

+ - 

+ 

- 

194 

706 

21 

79 

Total 900 100 

 

Diet specific RR=  

 

Table 2.b. Association of smoking and heart disease in 

patients without diet in 2×2 table 

 

Heart disease           Smoking 

+ - 

+ 

- 

6 

94 

29 

871 

Total 100 900 

 

Diet specific RR=  

 

As table 2 shows, the crude estimate of RR was 4. When 

data are stratified based on diet status, the results are 

presented in tables 2.a and 2.b for with and without diet 

respectively. The diet specific RR was 1.03 for diet users and 

1.86 for non-users. One can see easily that the crude estimate 

of RR lies out of the range of Specific RR. Thus, diet is a 

confounder factor and lack of its control, the positive 

association between smoking and risk of heart disease is 

exaggerated. In this example, the diet is not only a 
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confounder but also a modifier as well. Since the effect of 

smoking is quite different in two levels of diet status. 

Example 3. This example shows that the mixing effect of 

confounder with exposure distorts the real effect toward the 

null value i.e. the real effect will be diluted by confounding. 

In a cohort study, to determine the association between air 

pollution and pulmonary disease the results of collapsing 

data were presented in table 3. 

 

Table 3. Association of air pollution and pulmonary 

disease in 2 ×2 table  

 

Pulmonary 

disease 

         Air pollution 

+ - 

+ 

- 

200 

1800 

400 

3600 

Total 2000 4000 

 

RR=  

 

Table 3.a. Association of air pollution and pulmonary 

disease among women in 2 ×2 table  

 

Pulmonary 

disease 

         Air pollution 

+ - 

+ 

- 

110 

390 

380 

2620 

Total 1500 3000 

 

Sex specific RR=  

 

Table 3.b. Association of air pollution and pulmonary 

disease among men in 2 ×2 table  

 

Pulmonary 

disease 

       Air pollution 

+ - 

+ 

- 

90 

1410 

20 

980 

Total 1500 1000 

 

Sex specific RR=  

 

As table 3 shows the crude RR was 1 that means there is 

no association between air pollution and pulmonary disease. 

While the sex specific RR was 1.74 and 3 for women and 

men, respectively. The crude RR lies out of the range of sex 

specific RR that shows the lack of control for gender, the 

effect of interest is diluted toward the null value. Moreover, 

the sex specific RR for smoking varies from 1.74 to 3, thus, 

gender should be considered as a modifier as well. 

Several Points on Confounding Characteristics: We draw 

the attention of researchers and clinicians to the following 

points: First, confounder variables must be independently 

associated with disease (or outcome) of interest (i.e. risk 

factor for disease) for both the exposed and the non-exposed 

groups. If a covariate is associated with disease in exposed 

group not for non-exposed, this association might be 

triggered by exposure only. If this is the case, this variable is 

no longer a confounder. For example, if an association 

between sugar consumption and MI only was present in 

smokers not for non-smokers, sugar consumption would not 

be considered as confounding factor. Second, confounding 

factors must not be an intermediate variable in causal 

pathway relationship between exposure and disease (or 

outcome). For example, if the association of high density 

lipoprotein (HDL) with alcohol consumption and MI was in 

an intermediate causal pathway between alcohol 

consumption and MI, then HDL could not be considered as 

confounding and its effect should not be controlled in 

statistical analysis (3) since preventing the effect of HDL, 

the effect of alcohol would be diluted. Third, in practice, if 

the adjusted effect of OR (or RR) is substantially different 

with the crude estimates of OR (or RR), then the adjusted 

covariate is a confounder (2).  

Fourth, the potential effect of confounding is revealed by 

the magnitude of distortion of association between exposure 

and disease. The amount of this distortion depends on the 

magnitude of association of confounder with exposure and 

disease. Regarding the types of these association (positive or 

negative), the effect of interest might be over or 

underestimated (2). Fifth, one should distinguish between 

confounding and effect modifier, although a confounder 

factor may have the role of modifier as well, these two 

concepts are different (4). In analytical studies for prevention 

of mixing effect, control for confounding is necessary. Lack 

of its consideration yields invalid results, while lack of 

revealing the effect modification does not distort overall 

effects. Sixth, in randomized clinical-trial study, there is less 

concerned of imbalance characteristics between two groups 

of comparison with respect to some baseline variables (10, 

11) since random allocation prevents imbalance data and 

thus, confounding is no longer present if sufficient sample 
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size is recruited, in particular, randomization an unknown 

confounding in an design of study.   

Sources of confounding: There are several sources for 

confounding: 

Susceptibility bias: This bias occurs, because of the 

presence of susceptible factors at baseline (before exposure). 

Thus, the risk of outcome in exposed group is substantially 

greater than the non-exposed group at baseline (12). 

Exposure selection bias: This happens when the subjects or 

their family or their physician select exposure of interest. 

The motivation of such selection is usually associated with 

outcome. This could be considered a special case of 

susceptibility bias.  

For example, in observational cohort study, the behavior of 

mothers is compared in two groups of breast feeding and 

bottle feeding, this comparison is prone to be confounded if 

mothers selected breastfeeding to bottle feeding, differed 

with respect to some psychological behaviors that might 

affect the caring of their infants (12). 

Clinical indication: This bias occurs when an observational 

study compares the effect of different therapeutic manures. 

This confounding bias is called confounding by indication 

(or channeling bias) and it is a serious bias in non-

experimental studies of medication effect (6, 11, 13-15) 

because clinical indication affects on the choice of treatment 

that is independently associated with outcome. For example, 

channeling occurs when drug therapies preferentially 

prescribed to group of patients with specific risk profile 

(with evidence of clinical indications). Those who may not 

have such indication are prescribed with an alternative 

therapeutic agents. In clinical practice, the newer therapy is 

often assigned to profile of patients that is more likely to get 

benefit (6, 13). Thus, this leads to the incomparability of 

prognostic factors and baseline morbidity between the 

subjects receiving the new therapeutic agent versus the old 

ones. 

Contaminated bias: Exposure which is accompanied with 

other factors (or with other maneuvers) that can affect on 

outcome (12). This particularly happens in an observational 

study of therapeutic agents. For example, patients received a 

new therapeutic agent, probably they receive more care and 

surveillance as compared with those that receive standard 

therapeutic. This accompaniment may lead to more events of 

interest occurring in the first group. 

Confounding in diagnostic studies: In diagnostic studies 

which evaluate the accuracy of diagnostic tests versus gold 

standard, the receiver operator characteristic (ROC) analysis 

has become a popular method to determine the accuracy of 

quantitative (or rating) test results and the area under curve 

(AUC) has been used as measurement of accuracy with 

meaningful interpretation (16-19).  

Confounding not only distorts the validity of results in 

association studies, but also it can threaten the validity of 

diagnostic accuracy derived from the evaluation of new 

diagnostic test versus a gold standard. Lack of consideration 

of covariates (confounders) in the design of diagnostic 

studies or analysis for the evaluation of accuracy of 

diagnostic test leads accuracy index erroneous distortion (i.e. 

over or underestimated). This occurs when covariate is 

associated with both test results and the true state of disease. 

Janes and Pepe (2011) graphically showed that the overall 

ROC curve and corresponding AUC substantially differed 

from stratum specific ROC curve and their AUC when 

confounding was present (20).  

Thus, the methods for covariate adjustment are required 

in ROC analysis. For example, for the evaluation of the 

accuracy of PSA (prostate serum antigen) concentration, the 

influence of patient age has been revealed (21). 

Nevertheless, there are a few clinical investigations 

considered for the adjustment of the effect of covariates in 

clinical practice of diagnostic test evaluation. The lack of 

popular method and the availability of software for 

adjustment and also the lack of awareness of clinicians may 

be an possible explanation why control for confounding has 

been rarely used by clinical investigators in the context of 

diagnostic studies.  

Strategies for Control of Confounding: Control for 

confounding has an important role on the validity of 

analytical epidemiologic studies and this depends to what 

extent the confounding variables were considered and 

correctly measured. It is necessary that researchers have 

enough evidences of presence of such variables in the stage 

of study design and to collect their data in order to be able to 

control them in their analysis. 

To avoid confounding is to obtain a reference population 

for which to be comparable with study group. Such reference 

population may not be possible in practice. Thus 

investigators attempt to construct such population based on 

the study design for control of confounding. Several methods 

have been proposed in the stage of design and analysis for 

prevention of confounding. 

Control of Confounding in Design 
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Restriction 

Restriction is an effective approach for prevention of 

known risk factor of confounding. For example, if gender 

imbalance confounds study results, restriction on specific 

gender (e.g. women) would no longer be a confounder. 

Nonetheless, restriction on many confounding factors can 

reduce the number of subjects in the study and the 

generalizability of results as well.  In addition, when a factor 

is restricted in the design, its effect as a risk factor for 

disease can not be assessed. 

Matching 

Matching refers to applying a restriction in the selection 

of reference group in which it should have similarities with 

some characteristics with the study groups. This can be done 

with individual matching and group matching. For example, 

gender imbalance is not found, the proportion of women is 

similar in two compared groups by gender matching. This 

requires many reference groups of candidates to meet the 

matching criteria. In addition, matching becomes difficult if 

one attempts to match reference group and study group with 

several confounders. 

Although, matching reduces confounding bias in 

epidemiology, the advantage of matching is not only for 

control of confounding that can be achieved in analysis 

without matching. While the advantage is to achieve a 

greater efficiency in terms of amount of information 

obtained (5, 6). In case control study, the procedure of 

matching produces similarity in the distribution of exposure 

between cases and controls. This process itself produces 

confounding due to matching and thus this attenuates the 

measure of association if one does not apply conditional 

analysis with respect to matching factors (or matched 

analysis) (5, 22).  

Thus, applying matching in study design requires a 

conditional analysis for validity of results in case-control 

studies. While such analysis is not required for cohort studies 

because the procedure of matching differs in the study 

design, in cohort study, non-exposed and exposed are 

matched and matching factors are independent from the 

outcome of interest that might occur sometimes in the future. 

Moreover, the effect of matching factor can not be assessed 

as a risk factor for disease (21). The additional drawback of 

matching is overmatched. This problem occurs when an 

investigator matches controls and cases with several 

matching factors, in particular, the matching factors that are 

highly correlated with exposure. 

Randomization 

Randomized clinical trials (RCT) are the gold standard 

for establishing causality in clinical research. Randomized 

treatment allocation prevents imbalance covariates in the 

study design. To a large extent, it ensures that patients 

allocated in treatment groups be similar with respect to 

baseline characteristics.  In particular, random allocation 

deals with confounding which is unknown and it inherently 

produces comparable groups if sufficient number of subjects 

is attained in the study (6, 21). However, to prevent 

imbalance covariate at baseline by randomization is 

probabilistic and it depends on some conditions. For 

example, small sample size, and violation of protocol of 

RCT, noncompliance and loss to follow up may influence 

the covariate distribution that becomes imbalance (6). 

Block randomization (stratified randomization) with 

respect to covariate has a great assurance to prevent 

imbalance covariate. This type of randomization can be 

applied only for explicitly defined covariate not for unknown 

covariate. For example, if gender is covariate, stratified 

randomization by gender potentially prevents imbalance 

gender. A possible solution in dealing with non-compliance 

problem is to use intention to treat analysis in which the 

comparison is carried out by treatment assignment rather 

than treatment received (6). 

Control of Confounding in Analysis 

In observational study, control for all potential 

confounders may be impossible in design. Thus the 

investigator should have planned to adjust the effect of 

different covariates that can be considered as potential 

confounders in the stage of analysis. For this purpose, it is 

required that all potential confounders are measured 

correctly in the design. Obviously, those that were not 

measured and also unknown confounders could not be 

adjusted in analysis. Stratification and regression model are 

the two approaches for the control of confounding in 

analysis (23). Stratification is the simplest method for 

adjustment of confounding. For example gender imbalance 

can not be confounded with stratum specific effect. The 

method of adjustment of OR (or RR) proposed by Mantel- 

Haenzel, uses a weighting average of stratum specific effect 

of OR (or RR) if there is no heterogeneity of effect across 

stratum (24).  

This method of control for confounding is easy to 

understand and the data can be shown in 2 by 2 tables; 

stratum specific effect can easily be compared with crude 
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effect when collapsing data over different strata in a single 

table as we have shown in our three examples earlier. 

Moreover, the stratum specific effect can explore whether 

the covariate is a modifier. Nevertheless, this method can 

deal with few confounding factors because of paucity of 

sample size within each cell and thus the statistical inference 

becomes unreliable. A more powerful method for control of 

confounding is using multiple regression models that allow 

us to adjust the effect of several confounding factors 

simultaneously without loss of information. The 

development of several statistical software helps the 

practitioner to adjust simultaneously several confounding 

variables. For binary outcome, multiple logistic regression 

models are commonly used for the adjustment of categorical 

and continuous covariates in epidemiology for both cohort 

and case-control studies (25). The coefficients of logistic 

regression model have a meaningful interpretation as the log 

of OR (or RR) that is commonly used as a measure of 

association in epidemiologic studies.  

Consequently, the exponential coefficient that 

corresponds to exposure is the adjusted OR given all 

potential confounders to be into account in the regression 

model. For the continuous outcome, the multiple linear 

regression models are used for adjustment and the regression 

coefficients represent the adjusted mean difference of binary 

exposure and the adjusted increment change in mean of 

outcome for continuous covariate. For the censored data in 

survival analysis, Cox regression model is a proper method 

for the adjustment several covariates and the regression 

coefficients represent the adjusted log hazard ratio (or risk 

ratio) and their exponential corresponded coefficient of 

exposure is the adjusted RR in prognostic studies (26). 

Although, statistical models are able to smoothen the 

sparse data and estimate the adjusted effect of interest, 

nonetheless, no approach can solve sparse data problem 

properly (6). The lack of enough sample size affects the 

precision of estimate of regression coefficients and thus the 

confidence interval for parameters of interest becomes wider 

and it is also on the power of statistical tests. Thus, the 

apparent effect does not appear statistically significant. The 

other limitation of modeling to data is the violation of 

assumption used in the model that yields bias in regression 

coefficients and may distort the standard error of regression 

coefficient and the measures of association as well. The 

investigators should justify the reality of assumption used in 

their data where the model could be applied. We definitely 

recommend this the to clinician that consults with 

biostatistician in applying the powerful approach of 

regression modeling for their statistical analysis.  In addition, 

a practical technique for adjusting several confounding at 

once is by using propensity score (27). This score is the 

conditional probability of exposure to a treatment given as a 

set of observed covariates. This procedure has two steps. 

First, the score is obtained through regression model and 

then the score is used to adjust the effect of exposure. This 

procedure also involve, statistical linear model and logistic 

regression model (13, 23).  

Limitation for Control of Confounding   

One limitation for the control of confounding in 

observational studies is that the data of all potential 

confounders may not be available since these studies usually 

use the data that have already been available in the patients’ 

records. Thus, there are unknown confounders that were not 

measured. Another limitation is that the measurement errors 

often occur in the collection of data of confounding because 

of the soft instrument that is applied in data collection. Or 

even there is a possibility of misclassification for binary 

confounder. Therefore, the residual confounding (i.e. 

uncontrolled confounding) almost threatens the study results 

in observational studies (28-30). In addition, the lack of 

overlap information regarding confounding factors between 

the two groups of comparisons makes it difficult using the 

statistical model for adjustment. 

 

Conclusion 

The proper measuring of potential confounding factors 

besides exposure and outcome in study design helps the 

statistician to control them in analysis. In some situations, in 

particular confounding by indication in non- randomized 

interventional studies, measuring for indication variables for 

a particular drug therapy as a proxy and adjusting in analysis 

help in a way that such confounding is partially adjusted. A 

proper control for confounding bias does not assure the 

validity of the study unless the other sources of bias such as 

information bias, selection bias and also random errors 

(chance) are excluded.  Additionally, a proper design for 

assurance of causality inference is necessary. 
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